电磁场知识点总结(通用13篇)

电磁场知识点总结 第1篇

根据光电信息科学与工程专业的培养要求,电磁场与电磁波[1-2]课程是该专业的基础必修课。该课程要求学生掌握电磁场的有关定理、定律、xxx韦方程等的物理意义及数学内涵,并用所学的知识理解电磁场与电磁波的相关规律,培养学生正确的思维方式和分析问题的能力,为后续课程打下坚实的理论基础。该课程课时少,任务重,概念抽象,数学推导繁琐,是一门难教、难学的课程。然而学生在浏览课本目录时往往觉得知识点很熟悉而掉以轻心,导致在学习的过程中出现看似简单却无从下手的窘境。该课程需要较好的高等数学及大学物理知识,又是后续课程如应用光学、光电信息物理基础、物理光学、激光原理与技术、光电子学、信息光学等课程的重要理论基础,是一门承上启下的关键课程。因此如何把握课堂教学,使学生在课堂上对知识体系建立深刻而又良好的印象,最大限度地激发学生的学习兴趣,培养学生的学习能力至关重要。本文从以下几方面着手以提高学生学习积极性。

一、对比已经学过的知识,掌握新内容的核心要点

电磁场与电磁波教学内容丰富而抽象,是大学物理部分电磁学内容的升华,并且使用高等数学工具多,方法灵活。学生在初学时往往停留在旧的认识处理水平而不能深入理解。因此在教学过程中需借鉴已经学过的知识,进行对比分析,找出异同,重点突破,才能提高效率。例如矢量分析部分,有的同学就误以为只是高中的向量运算和高数中的多重积分相关知识。教学时可以通过对比找出该课程中的新知识,温习旧知识,拓展新内容,重点深入理解剖析、加强物理内涵知识的练习。电磁场部分也是深入学习的重点,通过对比高中物理、大学物理和本课程中对同一定律研究手段的深入可以发现,从结合微积分手段到充分利用矢量分析,可以解决的问题更加丰富全面,要求也更高。学习中也可以对电场和磁场部分进行对比分析学习[3],既能方便地记忆众多基本公式,又能体会科学理论中的对称美,激发学习兴趣。由于学生已有一定的大学物理基础,教师可以在讲授新知识时对比回顾已学内容,加深学生对相应知识的理解深度,也让学生明白该课程的学习要求。如在学习导体的静电感应现象、电介质的电极化过程、磁介质的磁极化过程中可以发现,对比学习可以帮助学生更好地理解各个过程进而对相应的类似公式有了深入理解,也就不易记错内容。学习中新旧知识相结合,温故知新,举一反三,既能降低学习入门难度,还可以明确课程核心内容,避免学生产生自己全会的错觉。此外还可以充分利用已经学习过的其他知识来深入理解探讨学习中的疑问。例如学生在大学物理中重点学习了动生电动势,然而在xxx韦方程的推导过程中却只考虑了感生电动势因素。如果学生的疑问得不到解惑可能会让他失去对科学严谨性的信任。然而关于xxx韦方程组的相对论变换内容不在该课程的.教学大纲中,可以诱导学生利用学习过的狭义相对论知识进行探索,甚至可以尝试推导低速情况下的近似表达式,这样即使不能完全理解也能消除心中疑惑,又加深了对已学知识的认识,激发了对科学的兴趣。

三、紧密结合现实生活,与高科技接轨,调动学习兴趣

电磁场与电磁波课程与我们日常生活的诸多方面息息相关,众多高科技应用均涉及相关理论。讲课的时候,可以从现实生活的角度出发,挑选生活中、新闻里大家普遍关注的科技背景,以激发学生学习热情。例如在讲解导体对电磁波的反射问题时,可以结合日常生活中大家熟悉的手机信号屏蔽问题,通过演示或者布置任务的方式让学生体会在不同大小孔洞的金属罩下手机信号的屏蔽情况,进而引导学生根据所学知识进行思考,体会2G、4G模式下不同波长电磁波的传播特性。在学习菲涅耳公式时,浅析隐形轰炸机的原理,让学生感受知识的重要应用价值,也可引起军迷爱好者的共鸣。又如在讲解电磁场的能量这一抽象概念时,利用微波炉的生活常识可以降低对这一概念的陌生感;在学习电磁波全反射知识时,结合光纤的工作原理进行讨论,可达到学以致用的效果,并能体会使用相关仪器时的注意事项。总之,教学时要紧密结合现实生活,与热点科技应用接轨,培养学生好学、创新和解决实际问题的能力。

四、加强实际演示观摩学习,培养学生动手操作能力

在教学过程中,单纯的口述讲解不足以充分调动学生的学习热情。电磁场与电磁波课程也是理论分析与实验现象紧密结合的课程,实验现象的演示观摩有助于学生对相关理论的深刻理解。然而出于总体培养方案的要求,光电信息科学与工程专业侧重于光电信息方面课程的学习,没有足够的时间再开设与本课程直接相关的实验内容。虽然其他光电类实验都或多或少地使用到本课程的相关内容,但是课时有一定滞后,对本课程的提升有限。例如在学习电磁波波包概念时,虽然可以使用多媒体课件进行演示,但是学生总感觉是数学仿真,体会不够深刻。我们可以引用学生在大学物理实验课程中都学习过的示波器,在课堂上直接演示两个不同频率的交流信号经过示波器的叠加显示结果,这样通过使用熟悉的仪器xxx的叠加、波包的传播特性等概念,可使学生得到真实深刻的体会。在引入新知识时,还可以利用一些饶有乐趣的现象激发学生探索欲望。如在讲解电磁波的知识时,我们知道电磁波波段是很宽泛的,而我们日常生活中的220V交流电也是一种50Hz的低频电磁波,可以使用示波器调节同步触发信号来进行探索。操作中我们会发现该微弱信号在用人体充当天线功能后瞬间放大,这些有趣现象的直观感受将刺激学生的求知欲。在实验过程中可以尝试用不同的方法调试各种情况,将抽象的理论转化为切身感受,从而达到较好的教学效果。此外还可以利用所学的知识分析以前实验中未深入理解的部分。还是熟悉的示波器,在观测xxx图像时,好多同学好奇为什么图像经常处于动态变化状态。利用学习到的波的叠加知识可以知道,我们可以把两叠加波频率差与时间因子的乘积作为整体相位差的一部分,即总的相位差在慢变,那么xxx图像也会随之同步变化,变化越慢也就意味着二者频率越接近。课堂上选用一些学生熟悉的仪器演示一些小知识,虽然不能做到每个学生都亲自操作学习,但也能达到活学活用、印象深刻的效果,也可以鼓励感兴趣的学生提出自己的新认识或者对其他疑问进行操作验证,提高学习乐趣。

五、提高作业学习质量,从练习中巩固引申知识点

由于题海战术等不良方法的长期熏陶,很多学生对课本内容、课堂知识讲解的重视度不足,而将例题、作业题当作应付考试的法宝。这样主次颠倒的做法不利于学生对知识的真正掌握。我们可以做出主动改变,让讲义与习题融为一体来提高学生的重视度。课堂知识点的讲解、证明等过程可以设置调整为例题的形式,并暗示学生可能为考题,或者要求学生将知识点自设题目进行考察复习;而对于习题的选取可以采用具有明确物理内涵、带有一定知识结论的习题,在理解中思考探索与巩固知识,练习中获得新知识。例如在练习电磁场波动方程知识时,引入熟悉的纵波概念,可以在练习中加深对纵波不满足波动方程知识的理解。又如在计算电磁波群速度的习题中可明确告知所练习的表达式是xxx波、波导等实际情况,得出的结论也即收获的知识点。讲解习题时告诫学生考题可能会对练习题目进行变动而非原题,要求学生一定要熟读课本,理解知识,不能存在靠背答案过关的侥幸心理。此外,可以安排学生结合自己的爱好及所长查阅资料,对某一感兴趣的问题进行研究,拓展知识涵盖面,写出自己的思考与收获,作为平时考核成绩的一部分。课堂教学不仅是传授知识的主要方式,更是师生思想与情感的交流平台。只有秉持理论联系实际,学以致用的教学理念,循循善诱激发学生兴趣,才能让学生掌握相关基础理论、专业知识和基本技能,进而灵活应用现代信息技术,获得分析和解决复杂工程问题的能力。

参考文献:

[1]谢处方,xxx谨.电磁场与电磁波[M].北京:高等教育出版社,.

[2]xxx,刘学观.电磁场与电磁波[M].西安:西安电子科技大学出版社,.

[3]郭业才.通信工程专业《电磁场与电磁波》教学实践[J].科技情报开发与经济,2006(6):247-248.

电磁场知识点总结 第2篇

1.铁:铁粉是黑色的;一整块的固体铁是银白色的。

——浅绿色

——黑色晶体

(OH)2——白色沉淀

——黄色

(OH)3——红褐色沉淀

(SCN)3——血红色溶液

——黑色的粉末

——红棕色粉末

10.铜:单质是紫红色

——蓝色

——黑色

——红色

(无水)—白色

·5H2O——蓝色

(OH)2——蓝色

——黑色固体

、BaCO3、Ag2CO3、CaCO3、AgCl、Mg(OH)2、三溴苯酚均是白色沉淀

(OH)3白色絮状沉淀

(原硅酸)白色胶状沉淀

、氯水——黄绿色

——淡黄绿色气体

——深红棕色液体

——紫黑色固体

、HCl、HBr、HI均为无色气体,在空气中均形成白雾

——无色的液体,密度大于水,与水不互溶

—淡黄色固体

—黄色固体

—浅黄色沉淀

—黄色沉淀

—无色,有剌激性气味、有毒的气体

—无色固体(沸点度)

33.品红溶液——红色

34.氢氟酸:HF——腐蚀玻璃

、NO——无色气体

——红棕色气体

——无色、有剌激性气味气体

——紫色

——紫色

电磁场知识点总结 第3篇

一、三大定律

库仑定律:在真空中,两个静止的点电荷q1和q2之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。

xxx定理:a) 静电场:eEdSi(真空中)

b) 稳恒磁场:mBdS0

环路定理:a) 静电场的环路定理: b) 安培环路定理:

Edl0

Bdl0Ii

(真空中)

大学物理电磁学公式总结

一、库仑定律

二、电场强度

三、场强迭加原理

点电荷场强

点电荷系场强

连续带电体场强

四、静电场xxx定理

五、几种典型电荷分布的电场强度

均匀带电球面

均匀带电球体

均匀带电长直圆柱面 均匀带电长直圆柱体

无限大均匀带电平面

六、静电场的环流定理

七、电势

八、电势迭加原理

点电荷电势

点电荷系电势

连续带电体电势

九、几种典型电场的电势

均匀带电球面

均匀带电直线

十、导体静电平衡条件

(1) 导体内电场强度为零 ;导体表面附近场强与表面垂直。

(2) 导体是一个等势体,表面是一个等势面。 推论一 电荷只分布于导体表面

推论二 导体表面附近场强与表面电荷密度关系

十一、静电屏蔽

导体空腔能屏蔽空腔内、

外电荷的相互影响。

即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。 十二、电容器的电容

平行板电容器

圆柱形电容器

球形电容器

孤立导体球

十三、电容器的联接 并联电容器

串联电容器

十四、电场的能量

电容器的能量

电场的能量密度

电场的能量

稳恒电流磁场小结

一、磁场 运动电荷的磁场

xxx—萨伐尔定律

二、磁场xxx定理

三、安培环路定理

四、几种典型磁场

有限长载流直导线的磁

无限长载流直导线的磁场

圆电流轴线上的磁场

圆电流中心的`磁场

长直载流螺线管内的磁场

载流密绕螺绕环内的磁场

五、载流平面线圈的磁矩

m和S沿电流的右手螺旋方向 六、洛伦兹力

七、安培力公式

八、载流平面线圈在均匀磁场中受到的合磁力

载流平面线圈在均匀磁场中受到的磁力矩

电磁感应小结

一、电动势

非静电性场强

电源电动势

一段电路的电动势

闭合电路的电动势

当时,电动势沿电路(或回路)l的正方向,时沿反方向。

二、电磁感应的实验定律

1、楞次定律:闭合回路中感生电流的方向是使它产生的磁通量反抗引起电磁感应的磁通量变化。楞次定律是能量守恒定律在电磁感应中的表现。

2、法拉第电磁感应定律:当闭合回路l中的磁通量变化时,在回路中的感应电动势为若时,电动势沿回路l的正方向,时,沿反方向。对线图,为全磁通。

3、感应电流

感应电量

三、电动势的理论解释

1、动生电动势 在磁场中运动的导线l以洛伦兹力为非电静力而成为一电源,导线上的动生电动势

若电动势沿导线l的正方向,若沿反方向。

动生电动势的大小为导线单位时间扫过的磁通量,动生电动势的方向可由正载流子受洛伦兹力的方向决定。 直导线在均匀磁场的垂面以磁场为轴转动

平面线圈绕磁场的垂轴转动

2、感生电动势 变化磁场要在周围空间激发一个非静电性的有旋电场E,使在磁场中的导线l成为一电源,导线上的感生电动

势 有旋电场的环流

有旋电场绕磁场的变化率左旋。 圆柱域匀磁场激发的有旋电场射光互相垂直。

电磁场知识点总结 第4篇

1、大小和方向都做周期性迅速变化的电流叫做振荡电流,产生振荡电流的电路叫做振荡电路。最简单的振荡电路是由电感线圈和电容器组成的,简称LC回路。LC回路中产生振荡电流是由于电容器不断充电和放电,该振荡电流是按正弦规律变化的。

2、LC电路中电磁振荡的产生过程

①放电过程:在放电过程中,q↓、u↓、E电场能↓→i↑、B↑、E磁场能↑,电容器的电场能逐渐转变成线圈的磁场能。由于线圈的自感作用,电流i是按正弦规律逐渐增大的,电流不会立刻达到最大值。放电结束时,q=0,E电场能=0,i最大,E磁场能最大,电场能完全转化成磁场能。

②充电过程:放电结束时,由于L的自感作用,电路中移动的电荷不会立即停止运动,仍保持原方向流动。在充电过程中,q↑、u↑、E电场能↑→I↓、B↓、E磁场能↓,线圈的磁场能向电容器的电场能转化。充电结束时,q、E电场能增为最大,i、E磁场能均减小到零,磁场能向电场能转化结束。

③反向放电过程:q↓、u↓、E电场能↓→i↑、B↑、E磁场能↑,电容器的电场能转化为线圈的磁场能。放电结束时,q=0,E电场能=0,i最大,E磁场能最大,电场能向磁场能转化结束。

④反向充电过程:q↑、u↑、E电场能↑→i↓、B↓、E磁场能↓,线圈的磁场能向电容器的电场能转化。充电结束时,q、E电场能增为最大,i、E磁场能均减小到零,磁场能向电场能转化结束。

电磁场知识点总结 第5篇

自然界存在正负两种电荷,并且物体所带电荷量是量子化的,最小的一份电量是(正)电子所带电荷的绝对值 e\\times10^{-19}C 。xxx提出描写电子运动并满足相对论不变性的波动方程,预言了电荷对称性。对于一个孤立系统,电荷总量是守恒的。

库仑扭秤的扭转角度与力矩成正比,力臂固定的条件下也就是与作用力大小成正比,由此得到库仑定律 \boldsymbol{F}_{10}=k\frac{q_1q_0}{r_{10}^3}\boldsymbol{r}_{10}=-\boldsymbol{F}_{01} ,其中 k=\frac{1}{4\pi\varepsilon_0} 。注意库仑定律适用于尺度为零的点电荷,近似适用于低速运动的点电荷。

将带电体分割为多个小电荷元,三维电荷密度定义为 \rho_e=\frac{\Delta q}{\Delta V} ,低维数类似定义。设 \boldsymbol{r} 为某个点电荷 q_0 的位置矢量,则指定带电体对该点电荷的作用力为 \boldsymbol{F}=\frac{q_0}{4\pi\varepsilon_0}\iiint_V\frac{\rho_e(\boldsymbol{r'})}{|\boldsymbol{r}-\boldsymbol{r'}|^3}(\boldsymbol{r}-\boldsymbol{r'})dV' ,带电体系之间的作用力可以类似求得。

利用试探电荷的受力定义电场强度 \boldsymbol{E}=\frac{\boldsymbol{F}}{q_0} ,从而点电荷的电场强度为 \boldsymbol{E}=\frac{q}{4\pi\varepsilon_0\boldsymbol{r}^3}\boldsymbol{r} ,可以通过叠加原理与微积分运算求解各种场景的电场强度分布。注意电场是一种物质,带电体之间的相互作用通过电场传递,是速度有限的近距作用。然而在静电学中,近距作用与超距作用观点没有区别。

静电场关于通量的定理称为xxx定理,关于环量的定理称为环路定理。xxx定理指出,任意封闭曲面的电通量等于曲面内部电荷总和除以 \varepsilon_0 ,也就是说 \oint_S\boldsymbol{E}\cdot d\boldsymbol{S}=\frac{1}{\varepsilon_0}\sum q 。它来自库仑定律,却适用于任意电场,可以非常有效地解决一维对称性的静电学问题。但是它没有反映静电场是保守力场的特性,这一点交给环路定理。电场线的切线方向即为场强方向,密度与电场强度大小成正比。

静电场的环量 \oint_L\boldsymbol{E}\cdot d\boldsymbol{l}=0 ,这等价于说静电场是保守力场,做功与路径无关。

既然静电场是保守力场,它就存在势函数。我们将电场力做的功定义为电势能的减少 W_{PQ}=W_P-W_Q ,其中 W 代表粒子的电势能。选定势能零点后,就可以确定电势能的绝对值。我们约定无穷远处为势能零点,定义电势差 U_{PQ}=U_P-U_Q ,可得带电量 q 的点电荷在某处产生的电势为 U(\boldsymbol{r})=\frac{1}{4\pi\varepsilon_0}\frac{q}{|\boldsymbol{r}-\boldsymbol{r'}|} 。并且根据电场强度的叠加原理,电势也满足叠加原理。电势与场强之间满足 \boldsymbol{E}=-\nabla U ,并且可以画出诸多等势面,显然电场强度总是垂直于等势面,并且等势面越密集、电场强度越大。

电磁场知识点总结 第6篇

高中地理知识点总结人类对宇宙的认识过程天圆地方说、地圆说、地心说、日心说、大爆炸宇宙学说。

宇宙的基本特点由各种形态的物质构成,在不断运动和发展变化。

天体的分类星云、恒星、行星、卫星、彗星、流星体、星际物质。

天体系统的成因天体之间因相互吸引和相互绕转,形成天体系统。

天体系统的级别地月系-太阳系-银河系(河外星系)-总星系。

日地平均距离亿千米。

电磁场知识点总结 第7篇

高中化学必备知识点归纳与总结

一、俗名

无机部分:

纯碱、苏打、天然碱 、口碱:Na2CO3

小苏打:NaHCO3 大苏打:Na2S2O3

石膏(生石膏): 熟石膏:2CaSO4·.H2O

莹石:CaF2 重晶石:BaSO4(无毒) 碳铵:NH4HCO3

石灰石、大理石:CaCO3 生石灰:CaO 食盐:NaCl 熟石灰、消石灰:Ca(OH)2 芒硝:Na2SO4·7H2O (缓泻剂) 烧碱、火碱、苛性钠:NaOH 绿矾:FeSO4·7H2O 干冰:CO2 明矾:KAl (SO4)2·12H2O 漂 :Ca (ClO)2 、CaCl2(混和物) 泻盐:MgSO4·7H2O 胆矾、蓝矾:CuSO4·5H2O 双氧水:H2O2

皓矾:ZnSO4·7H2O 硅石、石英:SiO2 xxx:Al2O3

水玻璃、泡花碱、矿物胶:Na2SiO3 xxx、铁矿:Fe2O3 磁铁矿:Fe3O4

黄铁矿、硫铁矿:FeS2 铜绿、孔雀石:Cu2 (OH)2CO3

菱铁矿:FeCO3 赤铜矿:Cu2O 波尔多液:Ca (OH)2和CuSO4

石硫合剂:Ca (OH)2和S 玻璃的主要成分:Na2SiO3、CaSiO3、SiO2

过磷酸钙(主要成分):Ca (H2PO4)2和CaSO4

重过磷酸钙(主要成分):Ca (H2PO4)2

天然气、沼气、坑气(主要成分):CH4 水煤气:CO和H2

硫酸亚铁铵(淡蓝绿色):Fe (NH4)2 (SO4)2 溶于水后呈淡绿色

光化学烟雾:NO2在光照下产生的一种有毒气体 xxx:浓HNO3:浓HCl按体积比1:3混合而成,

铝热剂:Al + Fe2O3或其它氧化物。 尿素:CO(NH2) 2

有机部分:

氯仿:CHCl3 电石:CaC2 电石气:C2H2 (乙炔)

TNT:

氟氯烃:是良好的制冷剂,有毒,但破坏O3层。 酒精、乙醇:C2H5OH

裂解气成分(石油裂化):烯烃、烷烃、炔烃、H2S、CO2、CO等。

焦炉气成分(煤干馏):H2、CH4、乙烯、CO等。 醋酸:冰醋酸、食醋 CH3COOH

甘油、丙三醇 :C3H8O3 石炭酸:苯酚 蚁醛:甲醛 HCHO

:35%—40%的甲醛水溶液 蚁酸:甲酸 HCOOH

葡萄糖:C6H12O6 果糖:C6H12O6 蔗糖:C12H22O11 麦芽糖:C12H22O11 淀粉:(C6H10O5)n

硬脂酸:C17H35COOH 油酸:C17H33COOH 软脂酸:C15H31COOH

草酸:乙二酸 HOOC—COOH (能使蓝墨水褪色,呈强酸性,受热分解成CO2和水,使KMnO4酸性溶液褪色)。

二、颜色

铁:铁粉是黑色的;一整块的固体铁是银白色的。

Fe2+——浅绿色 Fe3O4——黑色晶体 Fe(OH)2——白色沉淀

Fe3+——黄色 Fe (OH)3——红褐色沉淀 Fe (SCN)3——血红色溶液

FeO——黑色的粉末 Fe (NH4)2(SO4)2——淡蓝绿色

Fe2O3——红棕色粉末

铜:单质是紫红色

Cu2+——蓝色 CuO——黑色 Cu2O——红色

CuSO4(无水)—白色 CuSO4·5H2O——蓝色

Cu2 (OH)2CO3 —绿色

Cu(OH)2——蓝色 [Cu(NH3)4]SO4——深蓝色溶液

FeS——黑色固体

BaSO4 、BaCO3 、Ag2CO3 、CaCO3 、AgCl 、Mg (OH)2 、三溴苯酚均是白色沉淀

Al(OH)3 白色絮状沉淀 H4SiO4(原硅酸)白色胶状沉淀

Cl2、氯水——黄绿色 F2——淡黄绿色气体 Br2——深红棕色液体

I2——紫黑色固体 HF、HCl、HBr、HI均为无色气体,在空气中均形成白雾

CCl4——无色的液体,密度大于水,与水不互溶

Na2O2—淡黄色固体 Ag3PO4—黄色沉淀 S—黄色固体 AgBr—浅黄色沉淀

AgI—黄色沉淀 O3—淡蓝色气体 SO2—无色,有剌激性气味、有毒的气体

SO3—无色固体(沸点度) 品红溶液——红色 氢氟酸:HF——腐蚀玻璃

N2O4、NO——无色气体 NO2——红棕色气体

NH3——无色、有剌激性气味气体 KMnO4--——紫色 MnO4-——紫色

三、现象:

1、铝片与盐酸反应是放热的,Ba(OH)2与NH4Cl反应是吸热的;

2、Na与H2O(放有酚酞)反应,熔化、浮于水面、转动、有气体放出;(熔、浮、游、嘶、红)

3、焰色反应:Na 黄色、K紫色(透过蓝色的钴玻璃)、Cu 绿色、xxx红、Na+(黄色)、K+(紫色)。

4、Cu丝在Cl2中燃烧产生棕色的烟; 5、H2在Cl2中燃烧是苍白色的火焰;

6、Na在Cl2中燃烧产生大量的白烟; 7、P在Cl2中燃烧产生大量的白色烟雾;

8、SO2通入品红溶液先褪色,加热后恢复原色;

9、NH3与HCl相遇产生大量的白烟; 10、铝箔在氧气中激烈燃烧产生刺眼的白光;

11、镁条在空气中燃烧产生刺眼白光,在CO2中燃烧生成白色粉末(MgO),产生黑烟;

12、铁丝在Cl2中燃烧,产生棕色的烟; 13、HF腐蚀玻璃:4HF + SiO2 = SiF4 + 2H2O

14、Fe(OH)2在空气中被氧化:由白色变为灰绿最后变为红褐色;

15、在常温下:Fe、Al 在浓H2SO4和浓HNO3中钝化;

16、xxx苯酚溶液的.试管中滴入FeCl3溶液,溶液呈紫色;苯酚遇空气呈粉红色,

17、蛋白质遇浓HNO3变黄,被灼烧时有烧焦羽毛气味;

18、在空气中燃烧:S——微弱的淡蓝色火焰 H2——淡蓝色火焰 H2S——淡蓝色火焰

CO——蓝色火焰 CH4——明亮并呈蓝色的火焰 S在O2中燃烧——明亮的蓝紫色火焰。

19.特征反应现象:

20.浅黄色固体:S或Na2O2或AgBr

21.使品红溶液褪色的气体:SO2(加热后又恢复红色)、Cl2(加热后不恢复红色)

22.有色溶液:Fe2+(浅绿色)、Fe3+(黄色)、Cu2+(蓝色)、MnO4-(紫色)

有色固体:红色(Cu、Cu2O、Fe2O3)、红褐色[Fe(OH)3]

蓝色[Cu(OH)2] 黑色(CuO、FeO、FeS、CuS、Ag2S、PbS)

黄色(AgI、Ag3PO4) 白色[Fe(0H)2、CaCO3、BaSO4、AgCl、BaSO3]

有色气体:Cl2(黄绿色)、NO2(红棕色)

四、考试中经常用到的规律:

1、溶解性规律——见溶解性表; 2、常用酸、碱指示剂的变色范围:

指示剂 PH的变色范围

甲基橙 <红色 ——橙色 >黄色

酚酞 <无色 ——浅红色 >红色

xxx <红色 ——紫色 >蓝色

3、在惰性电极上,各种离子的放电顺序:

阴极(夺电子的能力):Au3+ >Ag+>Hg2+ >Cu2+ >Pb2+ >Fa2+ >Zn2+ >H+ >Al3+>Mg2+ >Na+ >Ca2+ >K+

阳极(失电子的能力):S2- >I- >Br– >Cl- >OH- >含氧酸根

注意:若用金属作阳极,电解时阳极本身发生氧化还原反应(Pt、Au除外)

4、双水解离子方程式的书写:(1)左边写出水解的离子,右边写出水解产物;

(2)xxx:在左边先xxx电荷,再在右边xxx其它原子;(3)H、O不平则在那边加水。

例:当Na2CO3与AlCl3溶液混和时:

3 CO32- + 2Al3+ + 3H2O = 2Al(OH)3↓ + 3CO2↑

5、写电解总反应方程式的方法:(1)分析:反应物、生成物是什么;(2)xxx。

例:电解KCl溶液: 2KCl + 2H2O == H2↑ + Cl2↑ + 2KOH

xxx: 2KCl + 2H2O == H2↑ + Cl2↑ + 2KOH

6、将一个化学反应方程式分写成二个电极反应的方法:(1)按电子得失写出二个半反应式;(2)再考虑反应时的环境(酸性或碱性);(3)使二边的原子数、电荷数相等。

例:蓄电池内的反应为:Pb + PbO2 + 2H2SO4 = 2PbSO4 + 2H2O 试写出作为原电池(放电)时的电极反应。

写出二个半反应: Pb –2e- → PbSO4 PbO2 +2e- → PbSO4

分析:在酸性环境中,补满其它原子:

应为: 负极:Pb + SO42- -2e- = PbSO4

正极: PbO2 + 4H+ + SO42- +2e- = PbSO4 + 2H2O

注意:当是充电时则是电解,电极反应则为以上电极反应的倒转:

为: 阴极:PbSO4 +2e- = Pb + SO42-

阳极:PbSO4 + 2H2O -2e- = PbO2 + 4H+ + SO42-

7、在解计算题中常用到的恒等:原子恒等、离子恒等、电子恒等、电荷恒等、电量恒等,用到的方法有:质量守恒、差量法、归一法、极限法、关系法、十字交法 和估算法。(非氧化还原反应:原子守恒、电荷平衡、物料平衡用得多,氧化还原反应:电子守恒用得多)

8、电子层结构相同的离子,核电荷数越多,离子半径越小;

9、晶体的熔点:原子晶体 >离子晶体 >分子晶体 中学学到的原子晶体有: Si、SiC 、SiO2=和金刚石。原子晶体的熔点的比较是以原子半径为依据的:

金刚石 >SiC >Si (因为原子半径:Si>C>O).

10、分子晶体的熔、沸点:组成和结构相似的物质,分子量越大熔、沸点越高。

11、胶体的带电:一般说来,金属氢氧化物、金属氧化物的胶体粒子带正电,非金属氧化物、金属硫化物的胶体粒子带负电。

12、氧化性:MnO4- >Cl2 >Br2 >Fe3+ >I2 >S=4(+4价的S)

例: I2 +SO2 + H2O = H2SO4 + 2HI

13、含有Fe3+的溶液一般呈酸性。

14、能形成氢键的物质:H2O 、NH3 、HF、CH3CH2OH 。

一些特殊的反应类型:

⑴ 化合物+单质 化合物+化合物 如:

Cl2+H2O、H2S+O2、、NH3+O2、CH4+O2、Cl2+FeBr2

⑵ 化合物+化合物 化合物+单质

NH3+NO、H2S+SO2 、Na2O2+H2O、NaH+H2O、Na2O2+CO2、CO+H2O

⑶ 化合物+单质 化合物

PCl3+Cl2 、Na2SO3+O2 、FeCl3+Fe 、FeCl2+Cl2、CO+O2、Na2O+O2

电磁场知识点总结 第8篇

关于电磁场和电磁波的知识点及练习题

电磁场、电磁波及其应用

一. 本周教学内容:

三. 要点:

1. 振荡电流和振荡电路

大小和方向都做周期性变化的电流叫振荡电流,能产生振荡电流的电路叫振荡电路,LC电路是最简单的振荡电路。

2. 电磁振荡及周期、频率

(1)电磁振荡的产生

(2)振荡原理:利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能与磁场能的相互转化。

(3)振荡过程:电容器放电时,电容器所带电量和电场能均减少,直到零,电路中电流和磁场均增大,直到最大值。

给电容器反向充电时,情况相反,电容器正反方向充放电一次,便完成一次振荡的全过程。

(4)振荡周期和频率:电磁振荡完成一次周期性变化所用时间叫电磁振荡的周期,一秒内完成电磁振荡的次数叫电磁振荡的频率。对于LC振荡电路,

(5)电磁场:变化的电场在周围空间产生磁场,变化磁场在周围空间产生电场,变化的电场和磁场成为一个完整的整体,就是电磁场。

3. 电磁波

(1)电磁波:电磁场由近及远的传播形成电磁波

(2)电磁波在空间传播不需要介质,电磁波是xxx,电磁波传递电磁场的能量。

(3)电磁波的波速、波长和频率的关系, 。

4. 电磁波的发射,传播和接收

(1)发射

将电磁波发射出去,首先要有开放电路,其次,发射出去的电磁波要携带有信号,因而必须把要传递的电信号“加”别高频等幅振荡电流上去。

我们把将电信号加到高频等幅振荡电流上去的过程叫调制。

(2)传播

电磁波传播方式一般有三种:xxx、xxx、直线传播

xxx:沿地球表面空间向外传播,适于长波、中波和中短波,传播距离为几百公里。

xxx:依靠电离层的反射来传播,适于传播短波,传播距离为几千公里。

直线传播:在短距离内(几十公里)依靠波的直进,直接在空间传播多用于传播微波,需有中继站“接力”才能传远。

(3)接收

① 电谐振、调谐

② 检波

四. 规律技巧

电磁波的波速问题

真空中电磁波的`波速与光速相同,

1. 同一种电磁波在不同介质中传播时,频率不变(频率电波源决定)、波速、波长发生改变,在介质中的速度都比在真空中速度小。

2. 不同电磁波在同一介质中传播时,传播速度不同,频率越高,波速越小,频率越低波速越大。

3. 在真空中传播时,不同频率的电磁波的速度相同

4. 电磁波和声波的特点不同,声波在介质中传播的速度与介质有关,电磁波在介质中传播的速度与介质和频率均有关。

【典型例题

[例1] 下列关于电磁波的叙述中,正确的是( )

A. 电磁波是电磁场由发生区域向远处传播

B. 电磁波在任何介质中的传播速度均是C. 电磁波由真空进入介质传播时,波长将变短

D. 电磁波不能产生干涉、衍射现象

分析与解答:

该题为1994上海题,电磁波只有在真空中的传播速度才是 。

电磁波与其他波同样xxx的基本特征,即能产生干涉和衍射现象,当电磁波由真空进入介质传播时, ,f定,由∴ 正确答案AC

[例2] 某发电站用燃烧煤来发电,每1kg煤放出500J热能,热能发电为,发电站通过升压器、输电线和降压器把电能输送给生产和照明组成的用户,发电机输出功率是100kW,输出电压是250V,升压器原副线圈的匝数之比为1:25,输电线上功率损失为4%,用户需要电压为220V,则(1)输电线的电阻和降压器的匝数比为多少?(2)若有60kW分配给生产用电,其余电能用来照明,那么可装25W的电灯多少盏?

分析与解答:

(1)远距离输电电路如下图,升压器副线圈两端电压

副线圈中的电流

输电线电阻R上损失的功率∴

降压器原线圈电压

降压器原副线圈匝数比

(2)由能量守恒: ∴ ∴

[例3] 电视机的显像管中,电子束的偏转是用磁偏转技术实现的,如下图所示电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,磁场方向垂直于圆面,磁场区的中心为O点,半径为r,当不加磁场时,电子束将通过O点,而打到屏幕的中心M点,为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转?D已知角

分析与解答:

电子在磁场中沿圆弧运动,设电子在磁场中做圆周运动的半径为R。

则 又 ∵ ∴

[例4] 质谱仪,如下图所示是一种质谱仪的示意图,其中MN板的左方是带电粒子速度选择器,选择器内有正交的匀强电场E和匀强磁场B。

一束有不同速率的正离子水平地由小孔S进入场区,路经不发生偏转的条件是 ,∴ ,能通过速度选择器的带电粒子必是速度为质谱仪是在先对离子束进行速度选择后,相同速率的不同离子在右侧的偏转磁场 中做匀速圆周运动,不同荷质比的离子轨道半径不同。

将落在MN板的不同位置,由此可以用来测定带电粒子的质量和分析同位素。

【模拟】(答题时间:60分钟)

1. 关于电磁场和电磁波,下列说法正确的是( )

A. 电场和磁场总是相互联系着,统称为电磁场

B. 电磁场由发生区域向远处传播就是电磁波

C. 电磁场是一种物质,可以在真空中传播

D. 电磁波的传播速度总是2. 某电磁波从真空进入介质后,发生变化的量有( )

A. 波长和频率 B. 波速和频率 C. 波长和波速 D. 频率和能量

3. 电磁波和机械波相比较,下列说法中正确的有( )

A. 电磁波传播不需要介质,机械波传播需要介质

B. 电磁波在任何物质中传播速度都相同,机械波波速大小决定于介质

C. 电磁波、机械波都会发生衍射

D. 机械波会发生干涉,电磁波不会发生干涉

4. 下述关于电磁场的说法中正确的是( )

A. 只要空间某处有变化的电场或磁场,就会在其周围产生电磁场,从而形成电磁波B. 任何变化的电场周围一定有磁场

C. 振荡电场和振荡磁场交替产生,相互依存,形成不可分离的统一体,即电磁场

D. 电磁波的理论在先,实践证明在后

5. 按照xxx韦的电磁场理论,以下说法中正确的是( )

A. 恒定的电场周围产生恒定的磁场,恒定的磁场周围产生恒定的电场

B. 变化的电场周围产生磁场,变化的磁场周围产生电场

C. 均匀变化的电场周围产生均匀变化的磁场,均匀变化的磁场周围产生均匀变化的电场

D. 均匀变化的电场周围产生稳定的磁场,均匀变化的磁场周围产生稳定的电场

6. 一束持续电子流在电场力作用下做匀加速直线运动,则在其周围空间( )

A. 产生稳定的磁场 B. 产生变化的磁场

C. 所产生的磁场又可产生电场 D. 产生的磁场和电场形成电磁波

7. 某空间中出现了如图虚线所示的一组闭合的电场线,这可能是( )

A. 在中心O有一静止的点电荷

B. 沿AB方向有一段通有恒定电流的直导线

C. 沿BA方向的磁场在减弱

D. 沿AB方向的磁场在减弱

8. 如图所示,甲、乙完全相同的带正电粒子,以相同的动能在匀强磁场中运动,甲从B1区域运动到B2区域,且 ,乙在匀强磁场中作匀速圆周运动,且在 时间内,该磁场的磁感强度从B1增大为B2则当(B)图中磁场增大为B2时甲乙两粒子动能的变化情况为( )

A. 都保持不变 B. 甲不变,乙增大 C. 甲不变,乙减小 D. 甲增大,乙不变

9. 某电路中电场随时间变化的图象如图所示,能发射电磁波的电场是( )

A B

C D

10. 如图所示内壁光滑、水平放置的玻璃圆环内,有一直径略小于口径的带正电的小球,以速率v0沿逆时针方向匀速转动。若在此空间突然加上方向竖直向上,磁感强度B随时间成正比增加的变化磁场,设运动过程中小球带电量不变,那么( )

A. 小球对玻璃环的压力一定不断增大

B. 小球受到的磁场力一定不断增大

C. 小球先沿逆时针方向减速运动一段时间后沿顺时针方向加速运动

D. 磁场力对小球一直不做功

【试题答案】

1. BC 2. C 3. AC 4. BCD 5. BD 6. A 7. C

8. B 9. D 10. CD

电磁场知识点总结 第9篇

高中物理《电磁场和电磁波》教学设计

一、导引

人类认识客观世界,发现新的事物,常有二种方式,一种是从生产实践,科学实验中观察分析后发现新的事物,另一种是从科学理论出发,预言新的事物存在,电磁波的发现,属于后一种。xxx韦从电磁场理论出发,运用了较为深奥的数学工具,得到了描述电磁场特性的规律,并预言了电磁波的存在。后,他的学生赫兹用实验方法证实了xxx韦的伟大预言,发射并接收了电磁波,从而开创了无线电技术的新时代。

我们现在粗略地介绍了一下xxx韦的这个理论。

二、授课

1.xxx韦的理论要点一,变化的磁场产生电场

演示实验

装置如图所示,当穿过螺线管的磁场随时间变化时,上面的线圈中产生感应电动势,引起感应电流使灯泡发光。

(1)线圈中产生感应电动势说明了什么?

xxx韦认为变化的磁场在线圈中产生电场,正是这种电场(涡旋电场)在线圈中驱使自由电子做定向的移动,引起了感应电流。

(2)如果用不导电的塑料线绕制线圈,线圈中还会有电流、电场吗?

引导学生思考后回答,有电场、无电流。

(3)想象线圈不存在时线圈所在处的'空间还有电场吗?(有)

(4)总结说明,xxx韦认为线圈只不过用来显示电场的存在,线圈不存在时,变化的磁场同样在周围空间产生电场,即这是一种普遍存在的现象,跟闭合电路是否存在无关。

2.变化的电场产生磁场

我们知道,电流周围存在着磁场,xxx韦研究了电现象和磁现象的相似和联系。经过反复思考提出一个假设,变化的电场产生磁场。

这一点,我们从哲学上知道,事物之间是相互联系的,可以相互转化。

比如根据xxx韦的理论,在给电容器充电的时候,不仅导体中电流要产生磁场,而且在电容器两极板间周期性变化着的电场周围也要产生磁场。

3.电磁场、电磁波

(1)概念

xxx韦根据自己的理论进一步预言,如果在空间某域中有周期性变化的电场,那么,这个变化的电场就在它周围空间产生周期性变化的磁场,这个变化的磁场又在它周围空间产生新的周期性变化的电场……。可见,变化的电场和变化的磁场是相互联系的,形成一个不可分离的统一体,这就是电磁场,这种变化的电场和变化的磁场总是交替产生,并且由发生的区域向周围空间传播。见课本6-7图,电磁场由发生区域向远处的传播就是电磁波。

(2)电磁波的特点

①是xxx

②是xxx,真空中也能传播,能独立存在(与机械波不同)

③具有反射、折射、干涉、衍射等波的一切特性

(3)波速公式c=λf

c为真空中速度,电磁波在真空中速度等于光速。

无线电技术中使用的电磁波叫无线电波,见课本表格介绍。

三、扩展

xxx韦的电磁场理论三点

1.变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。

2.均匀变化的磁场,产生稳定的电场,均匀变化的电场,产生稳定的磁场。这里的“均匀变化”指在相等时间内磁感应强度(或电场强度)的变化量相等,或者说磁感应强度(或电场强度)对时间变化率一定。

3.不均匀变化的磁场产生变化的电场,不均匀变化的电场产生变化的磁场

4.振荡的(即周期性变化的)磁场产生同频率的振荡电场,振荡的电场产生同频率的振荡磁场。

5.变化的电场和变化的磁场总是相互联系着,形成一个不可分离的统一体,这就是电磁场,向周围空间传播这就是电磁波。

四、学生活动设计

通过观察试验,发挥想象能力,画出变化磁场产生的电场的电场线。2.总结机械波与电磁波的联系与区别

五、板书设计

电磁场和电磁波

xxx韦电磁场理论

1.变化的磁场产生电场

2.变化的电场产生磁场

3.电磁场→传播→电磁波

电磁场知识点总结 第10篇

电荷不能独立于具有静止质量的粒子而存在,电荷的移动是带电粒子的运动。金属导体的载流子是电子,它的价电子可以摆脱原子束缚,在导体中自由移动;电解质溶液的载流子是溶质分子离解产生的阴阳离子;电离气体的载流子是气体分子电离产生的阴阳离子,以及完全脱离分子束缚的电子;半导体的载流子有电子,还有带正电的空穴,前者称为 n 型半导体,后者称为 p 型半导体,名称源于载流子电性正负的英文名;低温超导体的载流子,是一对自旋相反的电子束缚形成的库珀对。

导体内部存在大量载流子或自由电荷,在外加电场的作用下,它们会定向移动,直到内外电场彼此抵消、导体内部电场恒为零。处于静电平衡下的导体具有如下性质:

避雷针利用了导体尖锐部分曲率大、单位面积带电量大的特点,在尖端附近创造强大的电场,加速空气中残留的自由电荷,与空气分子碰撞使之电离,形成空气击穿效应。使用避雷针可以优先击穿附近的空气,避免云与地面之间形成过高的电势差、产生大规模放电。场致发射显微镜通过金属尖端产生的强电场使氦原子电离,再与荧光质导电膜发生碰撞引起发光,放大率甚至优于电子显微镜。实验室中许多仪器的金属外壳接地,利用静电屏蔽效应,避免实验室内外电场彼此干扰。对于接地的导体空腔,如果腔内没有电荷,那么腔内场强处处为零,空腔与导体壳等电势,内表面没有电荷分布,外界电场不影响腔内电场分布;如果腔内有电荷,内表面会感应出等量反号的电荷,接地时腔内电荷不会影响腔外。

库仑定律的平方反比律很难直接精确验证,但是可以从xxx定理推出,满足库仑定律的金属球壳的内表面应该是不带电荷的,xxx许设计了一个实验确认这一点。

导体的电势和它带有的电荷存在某种关系,为此我们引入孤立导体电容的概念 C=\frac{Q}{U} ,实际电容器难以视作孤立导体,一般由两块彼此靠近且绝缘的导体板组成,分别带电 \pm Q ,板间电势差为 U ,系统电容仍然如上定义:

电容器的关键参数除了电容量本身,还有耐压能力,这代表了电容器两极可加的最大电压值。此外,电容器的串联满足 \frac{1}{C}=\sum_i\frac{1}{C_i} ,并联满足 C=\sum_iC_i ,串联会减小总电容,但是可以增加系统的耐压值。

电介质即为绝缘体,内部没有自由电荷,不能导电。在平行板电容器之间插入电介质后,可以观测到板间电势差降低、电容增大。这意味着电介质带来的附加电场与原电场反向,但是与导体不同,绝缘体的附加电场不能完全抵消外电场。电介质由许多电中性的原子、分子构成,由于原子核与核外电子的相互作用,这些电荷不能像导体中的自由电荷那样,完全自由地运动,却也会部分受到外电场的作用。现在讨论分子的极化,分为无极与有极两种,这是由分子内部正电中心与负电中心是否重合区分的。

单个分子的电偶极矩记为 \boldsymbol{p} ,定义电介质的极化强度矢量 \boldsymbol{P}=\frac{\sum_i\boldsymbol{p_i}}{\Delta V} 表征电介质的极化状态。电介质中 \boldsymbol{P} 处处相同称为均匀极化,否则称为非均匀极化,极化电荷的效果是削弱外加电场。

考虑加入电介质后的xxx定理,有 \nabla\cdot\boldsymbol{E}=\frac{1}{\varepsilon_0}(\rho_{e0}-\rho_{e1}) ,移项后定义电位移矢量 \boldsymbol{D}=\varepsilon_0\boldsymbol{E}+\boldsymbol{P} ,满足 \nabla\cdot\boldsymbol{D}=\rho_{e0} ,使得xxx定理中可以只出现自由电荷。电位移矢量与电场强度类似,存在电介质的静电场也是无旋场,存在电势的概念。

两种电介质的交界处,电场强度通常会发生突变,需要运用边值关系求解。具体推导主要利用xxx定理、环路定理以及微元分析,在此给出主要结果:界面两侧切向电场强度连续,因而电势及其一阶导数也是连续的,此外电位移矢量的法向分量连续。

如果给定了电荷分布,就可以根据库仑定律和叠加原理计算空间电场。那么根据电位移矢量的xxx定理与电场强度的环路定理,加上一些附加条件,能否确定唯一的静电场呢?这就是静电场唯一性定理要解决的问题:

在这些条件下, S 内的静电场将被唯一确定,这就是静电场的唯一性定理。

如果物体表面具有较好的对称性,它们的电场可以用电像法求解。关键是在考察区域的外部设置若干虚拟电荷,与原有电荷共同形成的电场满足边值关系或者电势条件。虚设的像电荷实际代表了考察区边界上的极化电荷、感应电荷等面电荷对考察区内部电场的贡献,可将问题简化成求解点电荷系产生的电场。

电磁场知识点总结 第11篇

考虑磁场对物质的作用时,实际上在考虑磁场对物质内部电流的作用。运用之前的公式求磁场对电流的作用力、力矩时,应首先求出外磁场 B=B_t-B_! ,即总磁场减去电流产生的磁场。然而 B_1 的计算也通常困难,不过对于稳恒闭合电流, B_1 可以用电流元自身的磁感应强度代替。

处于磁场中的铁磁性物质也具有磁性,使物体具有磁性的过程称为磁化。根据安培分子电流假说,磁化物质的来源是物质内部规则排列的分子电流,定义磁化强度 \boldsymbol{M}=\frac{\sum\boldsymbol{m}}{\Delta V} 分子电流的有序排列使磁介质中出现宏观电流,称为磁化电流。磁化电流的产生不伴随电荷的宏观位移,也不具有焦耳热效应,与传导电流不同。磁化电流可以在一切磁介质中存在,传导电流只能在导体中存在。

可以证明磁化强度与磁化电流之间存在关系 \oint_L\boldsymbol{M}\cdot d\boldsymbol{l}=\sum I' ,其中 I' 代表穿过 L xxx的封闭曲面的磁化电流。注意均匀磁化介质的磁化强度 M 为常量,所以均匀磁化介质的磁化电流为 0 。

总磁感应强度 \boldsymbol{B}=\boldsymbol{B}_0+\boldsymbol{B'} ,再借助无源性 \oint_S\boldsymbol{B}\cdot d\boldsymbol{S}=0 和有旋性 \oint_L\boldsymbol{B}\cdot d\boldsymbol{l}=\mu_0\sum I_0+\mu_0\sum I' ,可以根据传导电流与磁化电流的分布,唯一确定磁介质内外的静磁场分布。但是考虑到磁介质在磁场中的磁化现象,引入磁场强度 \boldsymbol{H}=\frac{\boldsymbol{B}}{\mu_0}-\boldsymbol{M} 消除安培环路定理中的磁化电流,此时安培环路定理变成 \oint_L\boldsymbol{H}\cdot d\boldsymbol{l}=\sum I_0 ,不再出现磁化电流项。这种操作表面上简化了环路定理,却也带来了分析 \boldsymbol{B} 和 \boldsymbol{H} 关系的新问题。

对于线性各向同性磁介质,有 \boldsymbol{M}=\mathcal{X}_m\boldsymbol{H} ,代入 \boldsymbol{B}=\mu\boldsymbol{H} ,有 \mu=\mu_0(1+\mathcal{X}_m) ,其中 \mathcal{X} 称为磁化率, \mu 称为磁导率。根据磁化率的正负,可以将物质分为顺磁质与抗磁质。铁钴镊等铁磁质的磁化强度 \boldsymbol{M} 相当大,且 \boldsymbol{M} 与 \boldsymbol{H} 关系复杂。此外,还有亚铁磁质、反铁磁质等。介质磁化的微观机制与介质种类有关,应参见教科书。

根据静磁场的xxx定理与安培环路定理,可得磁感应强度的法向分量在界面处连续等边值关系。静磁场的唯一性定理与静电场的唯一性定理类似,介质的性能方程、 \boldsymbol{B}=\mu\boldsymbol{H} 的线性关系式、以及一些附加条件,就可以唯一确定存在磁介质时的静磁场。

磁像法与电像法类似,基于磁场的唯一性原理,用于解决某些具有特殊几何形状的均匀线性各向同性介质界面的静磁场问题。按照介质界面的形状,可以分为无限平面、无穷长圆柱面等经典问题。

与直流电路的处理方式类似,静磁场基于xxx定理 \oint\boldsymbol{B}\cdot d\boldsymbol{S}=0 、磁介质性能方程 \boldsymbol{B}=\mu\boldsymbol{H} 、安培环路定理 \oint\boldsymbol{H}\cdot d\boldsymbol{l}=\mathcal{E}_m=\sum I_0 ,将电流密度 \boldsymbol{j} 与磁感应强度 \boldsymbol{B} 对应、 \boldsymbol{E'} 与 \boldsymbol{H} 对应、电导率 \sigma 与磁导率 \mu 对应、电动势 \mathcal{E} 与磁动势 \mathcal{E}_m 对应,可以得到类似全电路欧姆定律、电阻表达式的公式:

对于静磁场与静磁相互作用,之前我们采用基于电流的分析方法。然而历史上也有另一个截然不同的分析角度,即磁荷法。尽管至今没有证明孤立磁荷的存在,我们坚持电流观点。但是不存在传导电流的空间,两种方法给出的结果完全一致。没有传导电流存在时,xxx定理 \oint_S\boldsymbol{H}\cdot d\boldsymbol{S}=\frac{1}{\mu_0}\sum q_m ,环路定理 \oint_L\boldsymbol{H}\cdot d\boldsymbol{l}=0 ,由环路定理可以引入磁势 \varphi_m 使得 \boldsymbol{H}=-\nabla\varphi_m 。类比电偶极子,也可以得到磁偶极子在真空中的磁场强度分布、外磁场中的受力与力矩情况。磁极化即为磁化,如此称呼只是为了和电极化类比。磁荷法的意义在于,建立了静磁场解与静电场解之间唯一对应的关系,并且可以将传导电流与磁荷分布相互转化。

电磁场知识点总结 第12篇

电磁场与电磁波的学习心得

《电磁场与电磁波》作为通信工程专业的一门骨干学科,其重要性不言而喻,但该课程体系严谨,公式繁多,推导复杂,概念抽象。在学习时因难以理解而倍感困难。并且需要一定的物理及高数基础,不然学起来就更像学天书。

在现代电子技术中,不论是通讯、广播、电视、导航、雷达、定位、遥感、测控、以及电子对抗系统,还是家用电器、工业自动化、地质勘探、电力设施、交通运输、医疗卫生等领域,都直接或间接地涉及到电磁场与电磁波的有关内容。本课程的最大特点就是数学推导与分析较多,理论性较强,内容抽象,涉及了大量繁琐的计算和证明,对数学基础有较高的要求。课程中虽然涉及了部分中学阶段的电磁学知识,但在此基础上又有延伸和拓展,并以一种全新的方式呈现在我们面前(微分或积分形式)。但也仅仅是从其数学意义的角度上进行的,其间并未过多涉及其具体的工程应问题,使得在学习时依旧存在着一些理解上的障碍。同时,电磁场与电磁波存在于四维空间当中。对于习惯了三维空间的我们来说,引入既抽象又难理解的四维空间,无疑又给我们的学习带来了更大的困难。此外,书中还汇聚了多达数十位科学家的毕生研究成果,如xxx韦方程组,法拉第电磁感应定律,安培定律,xxx尔方程,xxx霍夫定理,坡印廷定律等,不胜枚举。更值得一提的是:这些知识的年代跨度可达数百年。由此,课程的特点也就更加显而易见:即难学、难懂。

电磁场与电磁波课程体系严谨,公式繁多,推导复杂,概念抽象,难以理解。因此我在学习之前树立了一个正确的学习态度,即使难学难懂,还要根据本课程的特点有针对性的采取一些科学的学习方法对这门课各个击破。

此外书中还频繁涉及到高等数学和线性代数的内容,比如旋度的计算就涉及到了线性代数中行列式的计算,散度和梯度的.计算又涉及到了高等数学中的有关知识。本课程有大量的电磁学公式,而课本中针对这些公式的大量繁杂的数学推导和证明又常常使我们无所适从,一头雾水。在解决实际问题的时候,根本无法抓住问题的本质所在,依旧会无从下手。

在以往其他专业课的学习中,总是对计算能力有着较高的要求,结果则往往是在考试时仅仅套了套公式,按了按计算器而已。虽然成绩较高,但是收获却不大。然而在电磁场与电磁波这门课程当中,真正应该强调的是对概念的理解,而并非计算和推导。对概念不仅要知其然,还要知其所以然,这样在实践中才能真正应用所学知识来解决问题。纵然在实际工程应用中会伴随着大量复杂的、且有一定精度要求的计算,但这些计算完全可以交给功能强大且效率极高的电子计算机来完成。在追求效率和速度的今天,在某些工程应用中使用手工计算明显不合时宜,因此不必拘泥于计算的问题。此外,过于繁杂的计算反而会掩盖概念的本质。对于计算,我们认为应该充分利用好现代计算工具,如各种数值计算软件和专业的电磁场与电磁波分析软件,熟练掌握它们的使用方法,培养现代工程实践能力才是正确的方向。

电磁场与电磁波课程中有许多内容比较抽象,比如:电磁波的极化现象,时谐电磁场,电磁波在空间的传播等内容。若只是研究课本上的理论,不仅十分枯燥而且不易理解掌握。此时应该遵循由感性到理性的认识规律,合理运用的电子课件,把抽象的内容形象化,具体化。

在《电磁场与电磁波》的学习过程中,必须学会一点点化解,比如学习电场时,先从点电荷开始,到线电荷,再到面电荷,最终到体电荷。从它所产生的电场类型开始,由静电场到时变电场,即Maxwell方程组中的第二,第四方程。从它所产生的磁场类型开始,由恒定磁场到时变磁场,即Maxwell方程组中的第一,第三方程。在有关电流的部分,同样可以以点带线,以线带面地来研究点电荷,线电流,面电流以及相应的电流密度等各种特性。而后又可以采用归纳法,从Maxwell方程组出发来反思静态场,把静态场归结为时变场的一种特殊情况。

该课程学习难度较大,公式概念不易理解,知识体系难以把握。但这并不意味着就没有办法取得理想的学习效果。我相信,只要结合自身实际,采用科学的,行之有效的学习方法,仍旧可以取得理想的效果。最后还应该特别值得注意的是:就算是遇到难点,也千万不能放弃,要多和别人交流,多问问题,最后依然会成功地理解这本书的。

电磁场知识点总结 第13篇

电磁波的知识点总结

电磁波:

电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效地传递能量和动量。

电磁波的产生:

电磁波是由时断时续变化的电流产生的。

电磁波谱:

按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波、红外线、可见光、紫外线、X射线及γ射线。以无线电的波长最长,宇宙射线的波长最短。

无线电波3000米~毫米。(微波厘米)

红外线毫米~微米。(其中:近红外为微米,中红外为3~6微米,远红外为6~15微米,超远红外为15~300微米)

可见光微米~微米。

紫外线微米~10纳米

X射线10纳米~纳米

γ射线纳米~1皮米

高能射线小于1皮米

传真(电视)用的波长是3~6米;xxx的波长更短,3米到几毫米。

微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿透而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对于金属类东西,则会反射微波。

电磁波的发现

1、电磁场理论的核心之一:变化的磁场产生电场

在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解: (1) 均匀变化的磁场产生稳定电场(2) 非均匀变化的磁场产生变化电场

2、电磁场理论的核心之二:变化的电场产生磁场

xxx韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场

理解: (1) 均匀变化的电场产生稳定磁场

(2) 非均匀变化的电场产生变化磁场

3、xxx韦电磁场理论的理解:

恒定的电场不产生磁场

恒定的磁场不产生电场

均匀变化的电场在周围空间产生恒定的磁场

均匀变化的磁场在周围空间产生恒定的电场

振荡电场产生同频率的振荡磁场

振荡磁场产生同频率的振荡电场

4、电磁场:如果在空间某区域中有周期性变化的电场,那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场,变化的电场和变化的磁场是相互联系着的,形成不可分割的统一体,这就是电磁场

5、电磁波:电磁场由发生区域向远处的传播就是电磁波.

6、电磁波的特点:

(1) 电磁波是xxx,电场强度E 和磁感应强度 B按正弦规律变化,二者相互垂直,均与波的传播方向垂直

(2)电磁波可以在真空中传播,速度和光速相同. v=λf

(3) 电磁波xxx的特性

7、赫兹的电火花:赫兹观察到了电磁波的反射,折射,干涉,偏振和衍射等现象.,他还测量出电磁波和光有相同的速度.这样赫兹证实了xxx韦关于光的电磁理论,赫兹在人类历史上首先捕捉到了电磁波。