小学六年级下册数学知识点总结(汇总17篇)

小学六年级下册数学知识点总结 第1篇

1.意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

2.计算法则:

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。

3.倒数:乘积是1的两个数叫做互为倒数。

4.求倒数地方法

①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

5.乘法解决问题

求一个数的几分之几是多少?(用乘法)

小技巧:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

求甲比乙多(少)几分之几?

多:(甲-乙)÷乙 少:(乙-甲)÷乙

小学六年级下册数学知识点总结 第2篇

初中一年级数学上册知识点

二元一次方程组

1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).

4.二元一次方程组的解法:

(1)代入消元法;(2)加减消元法;

(3)注意:判断如何解简单是关键.

※5.一次方程组的应用:

(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解

(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

一元一次不等式(组)

1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.

2.不等式的基本性质:

不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.

4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.

七年级下册数学知识点

一、事件:

1、事件分为必然事件、不可能事件、不确定事件。

2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

二、等可能性:是指几种事件发生的可能性相等。

1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

2、必然事件发生的概率为1,记作P(必然事件)=1;

3、不可能事件发生的概率为0,记作P(不可能事件)=0;

4、不确定事件发生的概率在0—1之间,记作0

三、几何概率

1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用xxx表示),所以几何概率公式可表示为P(A)=SA/xxx,这是因为事件发生在每个单位面积上的概率是相同的。

2、求几何概率:

(1)首先分析事件所占的面积与总面积的关系;

(2)然后计算出各部分的面积;

(3)最后代入公式求出几何概率。

初一数学学习方法

一预习

对于理科学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。

二听讲

这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。

三复习

体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。

四作业

认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更不要打“题海战术”。

五总结

这一步是为了更好的掌握所学知识。在学完一段知识或做了一道典型题后可总结:总结专题的数学知识;总结自己卡壳的地方;总结自己是怎么错的,错在哪里,总结题目的“陷阱”设在哪里及总结自己或他人的想法。

如何挑选及处理习题

一市面上的习题集数不胜数,大多数的习题集互相抄袭,漏洞百出,使同学在练习的过程中费时费力。我认为历的考试真题是的习题,它紧扣考试大纲,难度适中,不会出现偏题怪题的现象。同时也使同学们紧紧的把握考试的方向,少走弯路。

二有的同学喜欢“题海战术”拿题就做,从不总结,感觉作的越多,成绩越高。这是学习数学的弊端之一。

要记住:题不在于多而在于精。作题是必不可少的,但作完每一道题都要认真的反思,这道题的考点是什么,这道题的解题方法有多少种,哪种方法最简便,对于作错的习题要反复的思考,找出错误的原因,确保该知识点的熟练掌握。

三很多同学喜欢作偏题,难题。但却疏忽了对书本中的定义,概念及公式的理解。从而导致了在考试中经常出现“基本题”失误的现象。

因此,在平时的数学练习中,要对书中的每一个知识点都要深刻的理解,找出可能出现的考点,陷阱。在考试中则要做到“基本题全作对,稳作中档题一分不浪费,尽力冲击高档题,即使错了不后悔。”

小学六年级下册数学知识点总结 第3篇

圆、圆柱、圆柱必背公式

1、在同圆或等圆内,直径的长度是半径的2倍,公式d=2r;半径的长度是直径的一半,公式r=d÷2.

2、已知直径求周长:

圆的周长=圆周率×直径,直径=周长÷圆周率,

公式C=πd, 公式d=C÷π

3、已知半径求周长:半径=周长÷圆周率的2倍,

圆的周长=2×圆周率×半径, 公式r=C÷2π

公式C=2πr

4、已知半径求面积:圆的面积=圆周率×半径的平方,公式S圆 =πr?

5、已知直径求面积:圆的面积=圆周率×(直径÷2)的平方,公式S圆 =π(d÷2)?

6、圆柱的侧面积=底面的周长×高

圆柱的底面周长=侧面积÷高

圆柱的高=侧面积÷底面周长

7、圆柱的表面积=侧面积+2×底面积

8、圆柱的体积=底面积×高

圆柱的高=体积÷底面积

圆柱的底面积=体积÷高

9、一个圆锥的体积等于与它等底等高的圆柱体积的三分之一 。

圆锥的高等于体积的3倍除以底面积,公式h=3v÷s;

圆锥的底面积等于体积的3倍除以高,公式s=3v÷h。

10、环形的面积=大圆面积-小圆面积,S环 =πR?-πr?

11、体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。

即圆锥的底面积=圆柱底面积×3,圆柱底面积=圆锥底面积÷3

12、体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。

即圆锥的高=圆柱的高×3,圆柱的高=圆锥的高÷3。

小学六年级下册数学知识点总结 第4篇

公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1:经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4:平行于同一条直线的两条直线互相平行。

等角定

小学六年级下册数学知识点总结 第5篇

比例必背知识点

1、表示两个比相等的式子叫做比例。如:2:1=6:3

2、在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;

3、解比例 :根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。例如:3:x = 4:,内项乘内项,外项乘外项,则:4x =3×8,解得x=6。

4、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就xxx正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定) 例如:速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

5、成反比例的量 :两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就xxx反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定) 例如:路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

6、比例尺=图上距离:实际距离

实际距离=图上距离÷比例尺

图上距离=实际距离×比例尺

小学六年级下册数学知识点总结 第6篇

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者-一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

小学六年级下册数学知识点总结 第7篇

1.有理数:

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:

绝对值的问题经常分类讨论;

(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

初一数学复习方法

考试与作业逻辑不同:

我们的考试不同于作业,有些孩子作业写的还可以,准确率挺高的,但是考试成绩不理想。比如学校上完课,回家就写当天的作业,但是考试不一样,它是阶段性的、综合性的;再比如写作业,可以看资料,不会的可以请教同学,但是考试就得靠自己;还有写作业时格式不一定规范,不一定符合标准,但是考试老师会要求很严格;另外有些孩子考试比较焦虑,考试之前,爸爸妈妈给孩子加油鼓劲,反倒孩子考不好,有些孩子甚至在考试前后一定要上厕所,排解压力,甚至影响到考试成绩。

那具体涉及到数学的复习,我以北师大版为例,可以分4个步骤:

复习方法总结

1回归书本,梳理章节概念公式、性质定理等

就像盖房子,房子的地基是否扎实稳固。比如我们在复习课中,要求孩子们默写公式等,记忆单项式、多项式、整式的概念,以及幂的运算、整式乘除的法则,而且一定要记住平方差和完全平方公式以及变形。有些孩子能够背下完全平方公式,但是一旦用的时候,就偏偏不用,因为不够熟练,怕出错,所以就用最复杂的公式推导一遍,费时费力,还总错,而且重要的公式更加生疏。

比如知识点填空:

知识点填空

我们的孩子在学校大题普遍做的多,考试也能拿到一些分数,但是选择填空老错,考完试下来一看,错就错在概念不清。

比如平行线是怎么定义,性质定理有几条,判定定理有几条?他们之间有什么联系和区别?在这一章中,哪些地方一定要加“同一平面内”这5个字?家长们可以让孩子找找看,捋一捋。

再比如说,三角形一章,涉及到三边关系,角的关系,以及三角形的重要线段和它们的性质,等腰等边三角形的性质,这些一定是期末选择题的备选项。

还有全等的几种证明方法,常见的辅助线做法这是几何证明题的思路。

2题型突破,对各章节常见的热点问题归纳练习。

我们的数学、物理这些理科都是要做题型的,而不仅仅是做题,一定要明白思路。

大多数孩子要考的题型和难度,学校每天的作业以及每周的考试卷,你都必须分析一下,对题型归类,你可以用不同的笔标记一下,比如第2题和第8题是一类题,是化简求值还是公式的变形应用?通过这样一遍的分析,孩子们都会发现,其实考来考去,就是那几种题型反复的出,反复的练。这是非常高效的学习方法。

3、熟悉套路、模型

平行线常见的模型:铅笔模型、猪蹄模型,比如我经常和大家说的,遇见拐点,就做平行线。

三角形倒角常见模型:8字型、飞镖型、折角型。

三角形全等模型:角平分线的性质模型,等腰直角三角形模型,三垂直模型,翻折(对称)。

学好这些模型相等于我们是拿着工具箱考试,效率很高,比起其他同学,省去了推导的过程,速度又快,又准确。当然前提要掌握好基础内容,不要本末倒置。

如果孩子们能把前面的步骤都做好了,基本知识点,题型都掌握了,计算也不会出错,那你们考试一定没有问题,除了有些学校本来要求考很难,比如压轴题,不在于做的多,而是在精练,你做完之后不断的复盘,用自己的语言说出思路来,找找看里面的逻辑关系。

4、坚持改错题

把整个学期的试卷装订在一起,每周花半天的时间,订正错题,不会的标记星号,问老师问同学,直到会了为止,下周继续改,看自己是否真的懂了,对于错题,就像骆驼吃草一样,不停地咀嚼,错题也需要孩子们不断反复的看思路,才能在考试的时候避免在同类型的题上反复错。

小学六年级下册数学知识点总结 第8篇

1、只要是平均分就用(除法)计算。

2、除数是一位数的竖式除法法则:

(1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。

(2)除到被除数的哪一位,就把商写在那一位上。

(3)每求出一位商,余下的数必须比除数小。

顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。

3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)

4、笔算除法:

(1)余数一定要比除数小。在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1;

的被除数=商×除数+的余数;

最小的被除数=商×除数+1;

(2)除法验算:→用乘法

没有余数的除法有余数的除法

被除数÷除数=商被除数÷除数=商……余数

商×除数=被除数商×除数+余数=被除数

被除数÷商=除数(被除数-余数)÷商=除数

0除以任何不是0的数(0不能为除数)都等于0;

0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。

5、笔算除法顺序:确定商的位数,试商,检查,验算。

6、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)

7、多位数除以一位数(判断商是几位数):

用被除数位上的数跟除数进行比较,当被除数位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数位上的数小于除数时,商的位数就是被除数的位数减去1。

三年级数学《两位数乘两位数》知识点

1、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。

2、口算乘法:整十、整百的数相乘,只需把前面数字相乘,再看两个因数xxx几个0,就在结果后面添上几个0。

3、估算:18×22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

4、有大约字样的一般要估算。

5、凡是问够不够,能不能等的题目,都要三大步:

①计算

②比较

③答题。→别忘了比较这一步。

6、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。

7、相关公式:因数×因数=积积÷因数=另一个因数

运算顺序:先乘除,再算加减

同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算。

小学六年级下册数学知识点总结 第9篇

以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元差集表示

素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因为A和B中都有1,5,所以A∩B={1,5}。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说A∪B={1,2,3,5}。图中的阴影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减集合

1再相乘。48个。对称差集:设A,B为集合,A与B的对称差集A?B定义为:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},则A?B={a,c,d}对称差运算的另一种定义是:A?B=(A∪B)-(A∩B)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令N_是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:AB={x│x∈A,x不属于B}。注:空集包含于任何集合,但不能说“空集属于任何集合”.补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}空集也被认为是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中没有的3,4就是CuA,是A的补集。CuA={3,4}。在信息技术当中,常常把CuA写成~A。

高一数学知识点:函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

4.函数的周期性

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2|a|的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4|a|的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5.方程k=f(x)有解k∈D(D为f(x)的值域);

a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符号由口诀“同正异负”记忆;

(4)alogaN=N(a>0,a≠1,N>0);

6.判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

7.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

8.对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

9.处理二次函数的问题勿忘数形结合

二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

10依据单调性

利用一次函数在区间上的保号性可解决求一类参数的范围问题;

11恒成立问题的处理方法:

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解;

练习题:

1.(-3,4)关于x轴对称的点的坐标为_________,关于y轴对称的点的坐标为__________,

关于原点对称的坐标为__________.

2.点B(-5,-2)到x轴的距离是____,到y轴的距离是____,到原点的距离是____

3.以点(3,0)为圆心,半径为5的圆与x轴交点坐标为_________________,

与y轴交点坐标为________________

4.点P(a-3,5-a)在第一象限内,则a的取值范围是____________

5.xxx用500元去购买单价为3元的一种商品,剩余的钱y(元)与购买这种商品的件数x(件)

之间的函数关系是______________,x的取值范围是__________

6.函数y=的自变量x的取值范围是________

7.当a=____时,函数y=x是正比例函数

8.函数y=-2x+4的图象经过___________象限,它与两坐标轴围成的三角形面积为_________,

周长为_______

9.一次函数y=kx+b的图象经过点(1,5),交y轴于3,则k=____,b=____

10.若点(m,m+3)在函数y=-x+2的图象上,则m=____

与3x成正比例,当x=8时,y=-12,则y与x的函数解析式为___________

12.函数y=-x的图象是一条过原点及(2,___)的直线,这条直线经过第_____象限,

当x增大时,y随之________

13.函数y=2x-4,当x_______,y0,b0,b>0;C、k

小学六年级下册数学知识点总结 第10篇

负数知识点

1、0既不是正数,也不是负数,它是正数和负数的分界。

0大于负数,小于正数。负数比较大小时,不考虑负号,数字大的数反而小。

2、“+”可以省略不写,“-”不能省略。

3、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。

数轴上0左边的数都是负数,0右边的数都是正数

从左到右逐渐变大 最大负整数-1 最小正整数1

小学六年级下册数学知识点总结 第11篇

六年级下册语文必背知识点

成语归类

1、描写人物仪表、容貌、体态:仪表堂堂衣冠楚楚文质彬彬眉清目秀如花似玉

2、反映人物优秀品质:大公无私舍己为人视死如归拾金不昧临危不惧

3、带有“鼎”的成语:鼎足之势钟鸣鼎食人声鼎沸三足鼎立一言九鼎

4、带有数字的成语:一干二净两面三刀四面八方五颜六色九牛一毛

5、历史故事的成语:按图索骥程门立雪班门弄斧兵不厌诈三顾茅庐

6、带有一对反义词的成语:大公无私承前启后翻天覆地弄假成真舍近求远

7、带有一对近义词的成语:千辛万苦眼疾手快生龙活虎七拼八凑胡言乱语

8、来自寓言故事的成语:刻舟求剑守株待兔掩耳盗铃亡羊补牢惊弓之鸟

9、形容很专心的成语:专心致志全神贯注聚精会神专心一志目不转睛

10、含有人体器官的成语:眼高手低目瞪口呆头重脚轻口是心非耳闻目睹

11、描写春天的词语:xxx媚万紫千红春色满圆春意盎然鸟语花香

12、描写夏天的热:赤日炎炎烈日炎炎骄阳似火挥汗如雨大汗淋漓

13、描写山的成语:崇山峻岭悬崖峭壁高耸入云寸草不生连绵起伏

14、描写水的成语:水平如镜波澜壮阔水流湍急惊涛拍岸波涛汹涌

17、表示心情的成语:

高兴:兴高采烈心花怒放欣喜若狂心旷神怡沾沾自喜

伤心:垂头丧气心灰意冷悲痛欲绝心如刀绞万箭穿心

18、表示说话的成语:滔滔不绝口若悬河绘声绘色对答如流喋喋不休

19、带有动物名称的:闻鸡起舞、狐假虎威、胆小如鼠、龙飞凤舞、画蛇添足

20、描写人物神态的:手舞足蹈眉开眼笑愁眉苦脸目瞪口呆垂头丧气

21、描写自然环境的:

雨:和风细雨风雨交加狂风暴雨急风暴雨暴风骤雨

花:百花齐放百花盛开百花争艳花红柳绿五彩缤纷

天气:风和xxx骄阳似火秋高气爽天寒地冻滴水成冰

22、含有夸张手法的成语:怒发冲冠一目十行一日千里一字千金百发百中一日三秋

23、描写人心理活动的成语:忐忑不安心惊肉跳心神不定七上八下心急如焚

24、反映技艺高超的成语:技压群芳技压群雄声情并茂神通广大炉火纯青

25、反映朋友间情谊深厚的成语:深情厚谊、情同手足、情深义重同甘共苦肝胆相照

26、反映景色优美的成语:山清水秀、鸟语花香、花红柳绿莺歌燕舞翠流

27、形容人特别多的成语:人声鼎沸、摩肩接踵、人山人海、人来人往人如潮涌

28、形容情况险急:危在旦夕、迫在眉睫、命悬一线、火烧眉毛刻不容缓

29、反映场面热闹繁华的成语:络绎不绝门庭若市水泄不通人声鼎沸人山人海

30、有比喻的成语:归心似箭、视死如归、胆小如鼠、守口如瓶

31、含有“不”的成语:与众不同宁死不屈水泄不通目不识丁力不从心

32、描写地形地貌的成语:连绵不断高耸入云危峰兀立拔地而起一望无边

33、含有人物的成语:xxx尽夸父追日愚公移山塞翁失马、xxx三迁

34、描写冬天的词语:天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地

35、含有昆虫名称的成语:飞蛾扑火金蝉脱壳蜻蜓点水蛛丝马迹螳螂捕蝉,黄雀在后

36、多字格成语:

九牛二虎之力手无缚鸡之力千里之行,始于足下人不可貌相既来之,则安之麻雀虽小,五脏俱全解铃还须系铃人吃一堑,长一智一不做,二不休

37、“想”的成语:深思熟虑xxx想朝思暮想左思右想异想天开

38、描写颜色的成语:五彩缤纷五颜六色一碧千里万紫千红花红柳绿

叠字词

1、AABB:高高兴兴开开心心快快乐乐平平安安健健康康

2、ABAB:通红通红鲜红鲜红碧绿碧绿雪白雪白研究研究

3、ABAC:一心一意一模一样半信半疑人山人海十全十美

4、AABC:津津有味多多益善栩栩如生济济一堂头头是道

5、ABCC:生机勃勃兴致勃勃生气勃勃得意洋洋喜气洋洋

6、ABB:红通通红彤彤xxx金灿灿绿油油

7、ABAB(声音)哗啦哗啦轰隆轰隆嘀嗒嘀嗒叮咚叮咚淅沥淅沥

诗句、名言警句

1、描写春天的诗句:

春眠不觉晓,

处处闻啼鸟。

夜来风雨声,

花落知多少。

(xxx《春晓》)

2、描写夏天的诗句:

泉眼无声惜细流,

树荫照水爱晴柔。

小荷才露尖尖角,

早有蜻蜓立上头。

(杨万里《小池》)

3、描写秋天的诗句:

远上寒山石径斜,

白云生处有人家。

停车坐爱枫林晚,

霜叶红于二月花。

(xxx《山行》)

4、描写冬天的诗句:

千山鸟飞绝,

万径人踪灭。

孤舟蓑笠翁,

独钓寒江雪。

(xxx•xxx《江雪》)

5、抒发思念家乡或亲人的古诗:

床前明月光,

疑是地上霜。

举头望明月,

低头思故乡。

xxx《静夜思》

独在异乡为异地客,

每逢佳节倍思亲。

(xxx《九月九日忆山东兄弟》

6、描述军旅生活的古诗:

青海长云暗雪山,

孤城遥望玉门关。

黄沙百战穿金甲,

不破楼兰终不还。

(xxx《从军行》)

7、xxx亮的诗句:

床前明月光,

疑是地上霜。

举头望明月,

低头思故乡。

(xxx《静夜思》)

春风又绿江南岸,

明月何时照我还。

王安石《泊船瓜洲》

月落乌啼霜满天,

江枫渔火对愁眠。

张继《枫桥夜泊》

8、描写友情(离别、送别)的诗句:

海内存知己,

天涯若比邻。

xxx《送杜少府之任蜀州》

劝君更进一杯酒,

西出阳关无故人。

xxx《送元二使安西》

孤帆远影碧空尽,

惟见长江天际流。

xxx《送xxx之广陵》

桃花潭水深千尺,

不及汪伦送我情。

xxx《赠汪伦》

9、描写山川景物的诗句:

xxx上白云间,

一片孤城万仞山。

王之涣《凉州词》

两岸猿声啼不住,

轻舟已过万重山。

xxx《早发白帝城》

白日依山尽,

黄河入海流。

王之涣《登鹳雀楼》

10、咏物言志诗:

墙角数枝梅,

凌寒独自开。

遥知不是雪,

为有暗香来。

王安石《梅花》

11、劝学类:

黑发不知勤学早,

白首方悔读书迟。

(颜真卿《劝学》)

纸上得来终觉浅,

绝知此事要躬行。

(xxx《冬夜读书示字聿》)

12、惜时类:

少壮不努力,

老大徒伤悲。

(汉乐府《长歌行》)

一年之计在于春,

一日之计在于晨。

一寸光阴一寸金,

寸金难买寸光阴。

13、爱国类:

天下兴亡,

匹夫有责。

——顾炎武

先天下之忧而忧,

后天下之乐而乐。

——范仲淹《岳阳楼记》

王师北定中原日,

家祭无忘告乃翁。

——xxx《示儿》

14、心情类:

悲伤:

死去原知万事空,

但悲不见九州同。

——xxx《示儿》

高兴:

却看妻子愁何在,

漫卷诗书喜欲狂。

——xxx《xxx收河南河北》

两岸猿声啼不住,

轻舟已过万重山。

——xxx《早发白帝城》

15、歌颂母爱的诗句:

谁言寸草心,

报得三春晖。

(孟郊《游子吟》)

16、勤奋学习的名言:

哪里有天才,

我是把别人喝咖啡的功夫,

都用在工作上的。

——鲁迅

天才是百分之一的灵感加上百分之九十九的勤奋。——爱迪生

书山有路勤为径学海无涯苦作舟

17、珍惜时间的名言:

合理安排时间,

就等于节约时间。

——培根

莫等闲,

白了少年头,

空悲切。

——xxx

少壮不努力,

老大徒伤悲

(汉乐府《长歌行》

说明谦虚的名言:

满招损,谦受益。

虚心使人进步,骄傲使人落后

18、谚语:

(气象)

(1)雷公先唱歌,有雨也不多。

(2)朝霞不出门,晚霞行千里。

(农业谚语)

(1)今冬麦盖三层被,来年枕着馒头睡。

(2)庄稼一枝花,全靠肥当家。

(学习谚语):

(1)刀不磨要生锈,人不学要落后。

(2)世上无难事,只要肯登攀。

19、对联:

(学习)书山有路勤为径,学海无涯苦作舟。

(教师联):桃李满天下,四海皆学子。

(春联)新年纳余庆佳节号长春;爆竹一声除旧岁梅花数点接新春;雪里江山美花间岁月新

(格言联)世事洞明皆学问,人情练达即文章。良言一句三冬暖恶语伤人六月寒

(景区联)风景这边独好江山如此xxx;明月松间照清泉石上流

(做人联)横眉冷对xxx指俯首甘为孺子牛;虚心竹有低头叶傲骨梅无仰面花

20、歇后语:

(夸奖赞誉)小葱拌豆腐——xxx白张飞穿针——xxx有细

(三国歇后语)xxx用兵--神出鬼没xxx的江山--哭出来的关公喝酒--不怕脸红

21、xxx《三国演义》中的小故事有:《桃园三结义》《三顾茅庐》《草船借箭》《xxx三所周瑜》

22、xxx《西游记》中的小故事有:《猴王出世》《xxx大闹天宫》《三打白骨精》《高老庄收伏猪八戒》《真假美猴王》

23、xxx《水浒传》的小故事:《景阳冈》《鲁智深倒拔垂杨柳》《吴用智取生辰纲》《三打祝家庄》

24、xxx《红楼婪》的小故事:《xxxxxx大观园》《黛玉葬花》

25、《安徒生童话》中的故事:《丑小鸭》《野天鹅》《卖火柴的小女孩》《皇帝的新装》《拇指姑娘》

六年级语文学习方法

1、 学习未动,兴趣先行

2、 务学与求道

3、 自信是成功的第一秘诀

4、 态度决定一切

5、 不强调进步

6、 练就过硬的本领是学习的根本目的

7、 会玩、会偷懒、然后会学

8、 考试、分析考试结果、做出下一步计划、调整自己

9、 学习别人

六年级语文学习技巧

首先要培养浓厚的兴趣。xxx说:“知之者不如好知者,好知者不如乐知者。”这也就说明了学习一定要对所学的知识感兴趣,有兴趣去学习,是学好的根本,学习语文也一样。只要有了学习语文的兴趣,才会发觉其中的乐趣,发现了学习的乐趣,才有助于我们去持之以恒地学习语文,没有持之以恒的精神,根本学不好语文。有的同学认为语文很无聊,要背记的东西太多,所以根本不想去学,成绩当然也就上不去,所以,兴趣对学习来说是很重要的。

其次,学习语文是一个积累的过程,不可一蹴而就,只有长期的积累才能使语文学得更好。积累也就需要大量地阅读与背诵,当我们空闲的时候,读一读好的书籍或文章不仅能丰富知识,还能陶冶你的性情。不过,不能只是读,还要思考,我们应准备一个记录与摘抄的本子,在阅读的过程中将遇到的好的句子抄下来,并不时地看看,让它们变为自己的东西,当遇到疑点难点时,也要记下来,与旁人讨论,听取别人的看法。这样才会有所长进,水平才会提高。

小学六年级下册数学知识点总结 第12篇

小学一年级数学知识点

前后(前后的位置关系)

1、注意用前、后等词语描述物体的顺序与描述物体的准确位置两者之间的区别。

2、鹿在最前面,谁在它的后面?这个答案不,不仅仅有一个松鼠,还有兔子、乌龟和蜗牛都在鹿的后面。

3、注意让学生会用前、后等词语描述物体的相对位置。

上下(上下的位置关系)

1、在具体的情境中理解“上下”的相对性。

2、能用语言表达实际情境中物体的“上下”位置关系。

左右(左右的位置关系)

1、能用语言描述物体的左右位置关系。

2、能在情境中体会左右位置的相对性。进一步再体会:两人如果面向同一方向,他们所看到的左右位置与顺序是一致的;如果面对着面,他们看到的左右位置与顺序是相反的。

教室(前后、上下、左右综合应用)

综合运用前面三课所学的知识,进行物品的位置与顺序的描述活动

小学一年级上册数学知识点总结

一、6—10的认识:

1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。

2、10以内数的顺序:

(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。

(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。

3、比较大小:按照数的顺序,后面的数总是比前面的数大。

4、序数含义:用来表示物体的次序,即第几个。

5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。

记忆数的组成时,可由一组数想到调换位置的另一组。

二、6—10的加减法

1、10以内加减法的计算方法:根据数的组成来计算。

2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。

3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。

三、连加连减

1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。

2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。

四、加减混合

加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。

数学学习方法技巧

营建超卓的讲堂气氛

现代教育论以为:超卓的讲堂气氛能够成为传递常识的无声媒体,能够成为启迪智慧的钥匙,能够成为熏陶品德的潜在力量。每位教师都有殷切的领会:讲堂气氛在很大程度上影响着学生学习自动性的发挥。在教育中,教师规划学生喜欢的、赋有情味的学习活动,激起学生学习的喜欢,让学生愉快地进行数学学习;教师给学生供给充沛的参加数学活动的机会,引导学生在自主根究、协作沟通中获取数学常识、技术、数学思想办法,让学生经历一个生动生动、自动根究、赋有特性的发明进程。这一切,需求超卓的讲堂气氛来支撑。

教师要为学生营建民主、和谐的学习氛围。讲堂上实在的民主、和谐,源于师生的一种爱。教育进程是师生信息沟通的双向进程,也是师生情感沟通的进程。教师经过自己的教育活动用爱润泽学生的心田,引起学生对数学学习的热心,使之自动积极地参加学习活动。以“0的知道和有关的加减法”一课为例,在写0活动中,教师用到了这几句话“你想写0吗?”“好,伸出小手看屏幕书空”“在日字格里描一行0吧”“你以为写0时应留神什么?”“想给咱班小朋友说些什么?”“教师相信你的0必定写得很漂亮,动着手,在下面日字格里写几个0吧!”安排学生进行书空、描0、总结写0的办法、独立写0各项活动。

教师的言语渗透对学生的了解,对学生的尊重和信赖,融入了对学生深深的关爱,使学生愉快、自动获取写0的办法。在根究常识的进程中,学生有错时,不是批判责怪,而是再给学生一次机会。如请学生说出“盘子里1个桃,用数几标明?”时,出现“小猴吃了1个桃,用1标明”的答复。教师不急不躁,接着问:“那个盘子里的桃数用几标明呢?”小朋友马上说出“用1标明。”又如处理“两片荷叶上xxx几只青蛙?”的问题时,一位学生说出4-0,其他学生急于表达自己的等式4+0或0+4。

此刻,教师给学生自己纠正的机会,以“教师没有听清楚”为由,请学生再说一遍。美妙地为学生赢得领会成功的机会。“再给一次机会”让学生感到温暖、遭到鼓动,维护了学生学习的喜欢,维护了学生根究常识的积极性。学生在民主、宽松、和谐的教育空气中心情舒畅,思想生动,敢想、感说,愿想、愿说,学习潜能和自动性得到充沛发挥。

小学六年级下册数学知识点总结 第13篇

(一)、比的意义

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)

15 ∶ 10 = 3/2

前项 比号 后项 比值

3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。

也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。

4、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:

比 前 项 比号“:” 后 项 比值

除 法 被除数 除号“÷” 除 数 商

分 数 分 子 分数线“—” 分 母 分数值

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)

例如:15∶ 10=15÷10=15/10=3/2

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:

(2)用求比值的方法。注意: 最后结果要写成比的形式。

例如: 15∶10 = 15÷10 =15/10= 3/2 = 3∶2

还可以15∶10 = 15÷10 = 3/2最简整数比是3∶2

5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。

6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。

例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

1+4=5 糖占1/5 用 25×1/5得到糖的数量,水占4/5 用 25×4/5得到水的数量。

2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

糖和水的份数xxx1+4=5 一份就是25÷5=5糖有1份就是5×1水有4分就是5×4

第五单元圆的认识

一、认识圆形

1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等.

3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

小学六年级下册数学知识点总结 第14篇

1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。

5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。

7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。

8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。

进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)

11、把圆锥的侧面展开得到一个扇形。

12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。

13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

小学六年级下册数学知识点总结 第15篇

抛物线的性质:

1.抛物线是轴对称图形。对称轴为直线

x=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P(-b/2a,(4ac-b^2)/4a)

当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

焦半径:

焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点Fè???÷?

p2,0的距离|PF|=x0+p2.

求抛物线方程的方法:

(1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程.

(2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0).

小学六年级下册数学知识点总结 第16篇

求导数的方法

(1)基本求导公式

(2)导数的四则运算

(3)复合函数的导数

设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即

二、关于极限

.1.数列的极限:

粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如:

2函数的极限:

当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作

三、导数的概念

1、在处的导数.

2、在的导数.

3.函数在点处的导数的几何意义:

函数在点处的导数是曲线在处的切线的斜率,

即k=,相应的切线方程是

注:函数的导函数在时的函数值,就是在处的导数。

例、若=2,则=A-1B-2C1D

四、导数的综合运用

(一)曲线的切线

函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:

(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=;

(2)在已知切点坐标和切线斜率的条件下,求得切线方程为_。

小学六年级下册数学知识点总结 第17篇

指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.实数指数幂的运算性质

(二)指数函数及其性质

1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

高一年级数学高效学习方法

1.先看专题一,整数指数幂的有关概念和运算性质,以及一些常用公式,这公式不但在初中要求熟练掌握,高中的课程也是经常要用到的。

2.二次函数,二次方程不仅是初中重点,也是难点。在高中还是要学的内容,并且增加了一元二次不等式的解法,这个就要根据二次函数图像来理解了!解不等式的时候就要从先解方程的根开始,二次项系数大于0时,有个口诀得记下:“大于号取两边,小于号取中间”。

3.因式分解的方法这个比较重要,高中也是经常用的,比如证明函数的单调性,常在做差变形是需要因式分解,还有解一元多次方程的时候往往也先需要分解因式,之后才能求出方程的根。

4.判别式很重要,不仅能判断二次方程的根有几个,大于零2个根;等于零1个根;小于零无根。而且还能判断二次函数零点的情况,人教版必修一就会学到。集合里面有许多题也要用到。