圆柱和圆锥的知识点总结(必备8篇)

圆柱和圆锥的知识点总结 第1篇

一、说教材。

《课程标准》中对本学段的教学要求是:认识并掌握圆柱体、圆锥体的特征,明白表面积和体积的意义,通过操作、实验、转化、类比、推理等逻辑方法得到表面积和体积的计算方法,掌握常用的体积(容积)单位,会计算一些形体的表面积和体积(容器的容积),并能应用所学知识解决简单的实际问题。

二、根据此要求以及学生的特点,我确定了如下的教学目标:

1、通过复习、交流,我会说出圆柱和圆锥的特征和相关的计算公式。

2、通过练习、展示,我会运用公式正确解决有关圆柱的表面积和体积及圆锥体积的实际问题。

三、教学重点:运用所学知识解决实际问题。

四、教学难点:综合运用所学知识解决问题。

五、说教法学法。

本节课我采取 “练习法”,让学生在回顾整理、交流互补、巩固练习、展示自我等一系列活动中掌握知识、发展智力、锻炼能力。

六、说教学过程

“复习课”作为数学课的一种基本类型,它不同于新授课的探索发现,也有别于练习课的巩固应用,它的一个重要功能就是引导学生对所学的知识进行整理,把分散的知识综合成一个整体,使之形成一个较为完整的知识体系,提高学生对知识的掌握水平。承载着“回顾与整理,沟通与生成”的独特功能。本节课我设计了以下几个环节:

第一环节:谈话导入,明确目标。本学期,我们结识了小学阶段几何形体中的最后两位朋友,他们是——(圆柱和圆锥)。我们通过努力,知道了它们的来历,摸清了它们的特征,学会了计算圆柱的表面积、侧面积、体积以及圆锥的体积,体会到了它在我们生活中的作用。今天,让我们来盘点一下自己的收获,重温一下它们相关的知识吧!今天我们就来复习——圆柱和圆锥。谈话中,我把圆柱和圆锥比作朋友,拉近了学生和知识的距离,“知道了它们的来历,摸清了它们的特征,学会了计算圆柱的表面积、侧面积、体积以及圆锥的体积,体会到了它在我们生活中的作用”这几句话既简要概括了本单元所学的主要内容,又给学生的复习活动提供了线索。

圆柱和圆锥的知识点总结 第2篇

π是圆周率,一般取

r是圆柱底面半径

h为圆柱的高

圆柱体体积=底面积×高

V=πr2h=V=sh

还可以是

v=1/2ch×r

侧面积的一半×半径

圆柱体积相关公式

圆柱的侧面积=底面圆的周长×高

圆柱的表面积=上下底面面积+侧面积

圆柱的体积=底面积×高

圆柱的体积怎么计算

求圆柱体积先要求圆基的半径。两个圆都会做,因为它们大小相同。如果你已经知道半径,你可以继续前进。如果你不知道半径,那么你可以用尺子测量圆的最宽部分,然后除以2。这将比测量直径的一半更准确。我们说,这个圆筒的半径是1英寸(厘米)。把它写下来。如果你知道这个圆的直径,就把它分成2个。如果你知道周长,然后除以2π得到半径。

计算圆形基的面积。要做到这一点,只是用公式求圆的面积,πR2 =。只要把你找到的半径插进去就可以了。这里是如何做到这一点:aπx 12 = =πx 1。因为π约到三的数字,你可以说,圆形底座的面积是。

找到圆柱体的高度。如果你已经知道高度了,继续前进。如果没有,用尺子量一下。高度是两个基棱之间的距离。比方说,圆柱体的高度是4英寸(厘米)。把它写下来。

把基础的面积乘以高度。你可以把圆柱体的体积看作是圆柱体的面积在圆柱的整个高度上延伸的体积。因为你知道基的面积是的2,高度是4,你可以把两者相乘,得到圆柱体的体积。英寸,2英寸,4英寸。= 。这是你最后的答案。总是以立方单位陈述你的最终答案,因为体积是三维空间的量度。

圆柱和圆锥的知识点总结 第3篇

1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。

2、圆锥各部分的名称:

圆锥只有一个底面,底面是个圆,圆锥的侧面是个曲面,把圆锥的侧面展开得到一个扇形。

从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)

3、圆锥的体积:

圆锥的体积等于与它等底等高的圆柱体积的三分之一

V锥= ×底面积×高= S h= πr2 h

圆锥的高=圆锥体积×3÷底面积 h =3 V锥÷S = 3 V锥÷(πr2)

圆锥的底面积=圆锥体积×3÷高 S= 3 V锥÷h

4.圆锥的切割:

a.横切:切面是圆

b.竖切(过顶点和直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,即S增=2Rh

考试常见题型:

a 已知圆锥的底面积和高,求体积

b已知圆锥的底面周长和高,求圆锥的体积,底面积

c已知圆锥的底面周长和体积,求圆锥的高,底面积

以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算。

圆柱和圆锥的知识点总结 第4篇

1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。

(如果不是沿高剪开,有可能还会是平行四边形)

2.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。

3.圆柱的侧面积公式的应用:

(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;

(2)已知底面直径和高,求侧面积,可运用公式:S侧=dh;

(3)已知底面半径和高,求侧面积,可运用公式:S侧=2rh

4.圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:

S表=S侧+2S底

或S表=dh+d2/2=

或S表=2rh+2r2

5.圆柱表面积的计算方法的特殊应用:

(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。

圆柱和圆锥的知识点总结 第5篇

第二单元:圆柱与圆锥

一.圆柱

1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。

2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。

3、圆柱的侧面展开图:

a 沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。

b. 不沿着高展开,展开图形是平行四边形或不规则图形。

C.无论如何展开都得不到梯形.

侧面积=底面周长×高 S侧=Ch=πd×h =2πr×h

4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。

圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2 = 2πr×h + 2×πr2

(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)

圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。

圆柱切xxx近似的长方体,分的份数越多,xxx的图形越接近长方体。长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

长方体的体积=底面积×高

圆柱体积=底面积×高

V柱=S h =πr2 h

h =V柱÷S=V柱÷(πr2)

S=V柱÷h

5、.圆柱的切割:

a.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2

b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh

考试常见题型:

a 已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长

b已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积

c已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

d已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积

e已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积

以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。

常见的圆柱解决问题:

①、压路机压过路面面积、烟囱、教学楼里的支撑柱、通风管、出水管(求侧面积);

②、压路机压过路面长度(求底面周长);

②、水桶铁皮(求侧面积和一个底面积);

④鱼缸、厨师帽(求侧面积和一个底面积);

V钢管=(πR2πr2)×h

二、圆锥

1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。

2、圆锥各部分的名称:

圆锥只有一个底面,底面是个圆,圆锥的侧面是个曲面,把圆锥的侧面展开得到一个扇形。

从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)

3、圆锥的体积:

圆锥的体积等于与它等底等高的圆柱体积的三分之一

V锥= ×底面积×高= S h= πr2 h

圆锥的高=圆锥体积×3÷底面积 h =3 V锥÷S = 3 V锥÷(πr2)

圆锥的底面积=圆锥体积×3÷高 S= 3 V锥÷h

4.圆锥的切割:

a.横切:切面是圆

b.竖切(过顶点和直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,即S增=2Rh

考试常见题型:

a 已知圆锥的底面积和高,求体积

b已知圆锥的底面周长和高,求圆锥的体积,底面积

c已知圆锥的底面周长和体积,求圆锥的高,底面积

以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算。

三、圆柱和圆锥的关系

1.圆柱的特征:一个侧面、两个底面、无数条高且侧面沿高展开图是长形。

2.圆锥的特征:一个侧面、一个底面、一个顶点、一条高且侧面展开图是扇形。

圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

圆柱与圆锥等底等体积,圆锥的高是圆柱高的3倍。

圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

圆柱体积比等底等高圆锥体积多2倍。

圆锥体积比等底等xxx体积少。

(1)等底等高:V锥:V柱=1:3

(2)等底等体积:h锥:h柱=3:1

(3)等高等体积:S锥:S柱=3:1

题型总结:

高不变半径扩大缩小n倍,直径、底面周长、侧面积扩大缩小n倍,底面积、体积扩大缩小n2倍。

半径不变高扩大缩小n倍,侧面积、体积扩大缩小n倍

削成最大体积的问题:

正方体里削出最大的圆柱圆锥:圆柱圆锥的高和底面直径等于正方体棱长

长方体里削出最大的圆柱圆锥:圆柱圆锥底面直径等于宽(宽高)圆柱圆锥高等于长方体高

浸水体积问题:水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度。

等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3 。

圆柱和圆锥的知识点总结 第6篇

圆柱与圆锥知识点总结

一.圆柱

1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。

2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。

3、圆柱的侧面展开图:

a 沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。

b. 不沿着高展开,展开图形是平行四边形或不规则图形。

C.无论如何展开都得不到梯形.

侧面积=底面周长×高 S侧=Ch=πd×h =2πr×h

4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。

圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2 = 2πr×h + 2×πr2

(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)

圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。

圆柱切xxx近似的长方体,分的份数越多,xxx的图形越接近长方体。长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

长方体的体积=底面积×高

圆柱体积=底面积×高

V柱=S h =πr2 h

h =V柱÷S=V柱÷(πr2)

S=V柱÷h

5、.圆柱的切割:

a.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2

b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh

考试常见题型:

a 已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长

b已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积

c已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

d已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积

e已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积

以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。

常见的圆柱解决问题:

①、压路机压过路面面积、烟囱、教学楼里的支撑柱、通风管、出水管(求侧面积);

②、压路机压过路面长度(求底面周长);

②、水桶铁皮(求侧面积和一个底面积);

④鱼缸、厨师帽(求侧面积和一个底面积);

V钢管=(πR2﹣πr2)×h

二、圆锥

1、圆锥的形成:圆锥是以直角三角形的.一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。

2、圆锥各部分的名称:

圆锥只有一个底面,底面是个圆,圆锥的侧面是个曲面,把圆锥的侧面展开得到一个扇形。

从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)

3、圆锥的体积:

圆锥的体积等于与它等底等高的圆柱体积的三分之一

V锥= ×底面积×高= S h= πr2 h

圆锥的高=圆锥体积×3÷底面积 h =3 V锥÷S = 3 V锥÷(πr2)

圆锥的底面积=圆锥体积×3÷高 S= 3 V锥÷h

4.圆锥的切割:

a.横切:切面是圆

b.竖切(过顶点和直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,即S增=2Rh

考试常见题型:

a 已知圆锥的底面积和高,求体积

b已知圆锥的底面周长和高,求圆锥的体积,底面积

c已知圆锥的底面周长和体积,求圆锥的高,底面积

以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算。

三、圆柱和圆锥的关系

1.圆柱的特征:一个侧面、两个底面、无数条高且侧面沿高展开图是长形。

2.圆锥的特征:一个侧面、一个底面、一个顶点、一条高且侧面展开图是扇形。

圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

圆柱与圆锥等底等体积,圆锥的高是圆柱高的3倍。

圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

圆柱体积比等底等高圆锥体积多2倍。

圆锥体积比等底等xxx体积少。

(1)等底等高:V锥:V柱=1:3

(2)等底等体积:h锥:h柱=3:1

(3)等高等体积:S锥:S柱=3:1

题型总结:

高不变半径扩大缩小n倍,直径、底面周长、侧面积扩大缩小n倍,底面积、体积扩大缩小n2倍。

半径不变高扩大缩小n倍,侧面积、体积扩大缩小n倍

削成最大体积的问题:

正方体里削出最大的圆柱圆锥:圆柱圆锥的高和底面直径等于正方体棱长

长方体里削出最大的圆柱圆锥:圆柱圆锥底面直径等于宽(宽﹥高)圆柱圆锥高等于长方体高

浸水体积问题:水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度。

等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3 。

圆柱和圆锥的知识点总结 第7篇

教学目标:

1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。

2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。

教学重点:

圆柱、圆锥表面积、体积的计算

教学难点:

圆柱、圆锥的特征和它们的体积之间的联系与区别

教学过程:

一、复习圆柱与圆锥的特征

1、圆柱的特征

(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?

(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆。侧面是一个曲面.两个底面之间的距离叫做高.有无数条高。)

2、圆锥的特征

(1)圆锥有哪几个部分?有什么特点?

(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。只有一条高。)

(2)做第29页第1题

二、圆柱的表面积

1、出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答

圆柱的侧面是指哪一部分?它是什么形状的?

(长方形或正方形)

圆柱的侧面积怎样计算?

(底面的周长高)

为什么要这样计算?

(因为:底面的周长=长方形的长,高=长方形的宽)

2、表面积是由哪几部分组成的?

(圆柱的侧面积+两个底面的面积)

3、第29页第2题中求圆柱表面积的部分。

三、圆柱和圆锥的体积

1、圆柱的体积怎样计算?

(底面积高)计算公式是怎样推导出来的?

(把圆柱切割开,xxx近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积高,推出圆柱体的体积=底面积高)圆柱体的体积计算的字母公式是什么?(V=Sh)

2、圆锥的体积怎样计算?

(用底面积高,再除以3)计算圆锥体积的字母公式是什么?(V=1/3Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)

圆柱和圆锥的知识点总结 第8篇

1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。

5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π

7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×

8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×

(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)

9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)

11、把圆锥的侧面展开得到一个扇形。

12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷

13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。