初三圆总结 第1篇
1.垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
2.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
3.推论2xxx(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
4.定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
5.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
初三圆总结 第2篇
①直线和圆无公共点,称相离。 AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d
③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
当x=-C/Ax2时,直线与圆相离;
初三圆总结 第3篇
1.圆中心的一点叫圆心,用O表示。一端在圆心,另一端在圆上的线段叫半径,用r表示。
两端都在圆上,并过圆心的线段叫直径,用d表示。
2.圆有无数条半径,有无数条直径。
3.圆心决定圆的位置,半径决定圆的大小。
4.把圆对折,再对折就能找到圆心。
5.圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.
圆的周长
8.圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取.
或C=r. xxx的周长
10. 1= 2= 3= 4= 5= 6=
7= 8= 9= 10=
圆的面积
11.用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)
12. 11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256
17^2=289 18^2=324 19^2=361 20^2=400
13.周长相等时,圆的面积最大。面积相等时,圆的周长最小。
面积相同时,长方形的周长最长,正方形居中,圆周长最短。
周长相同时,圆面积最大,正方形居中,长方形面积最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
第四单元:比的认识
15.两个数相除,又叫做这两个数的比。比的后项不能为0.
16.比的前项和后项同时乘上或除以一个相同的数(0除外)。比值不变,这叫做比的基本性质。由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。先用小括号将两个数括起来,再用逗号将两个数隔开。括号里面的数由左至右为列数和行数。
列数与行数必须是具体的数,而不能用xxx(X,5)表示,它表述一条横线,(5,Y)它表示一条竖线,都不能确定一个点。
二、分数乘法
分数乘法意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
2、分数乘分数是求一个数的几分之几是多少。
分数的化简:分子、分母同时除以它们的最大公因数。
关于分数乘法的计算:可在乘的过程中约分,提倡在计算过程中约分,这样简便。
分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。
倒数的意义:乘积为1的两个数互为倒数。
特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
求倒数的方法:
1、求分数的倒数是交换分子分母的位置。
2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。
1的倒数是它本身。因为1*1=1
0没有倒数。0乘任何数都得0=0*1,1/0(分母不能为0)
三、分数除法
分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。
除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。
分数除法的基本性质:强调0除外
比:两个数相除也叫两个数的比。比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。比值是一个数,可以是整数,分数,也可以是小数。比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程/速度=时间。
化简比:
1、用比的前项和后项同时除以它们的最大公约数。
2、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
3、两个小数的比,向右移动小数点的位置。也是先化成整数比。
比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
常用来做判断的:
一个数除以小于1的数,商大于被除数。
一个数除以1,商等于被除数。
一个数除以大于1的数,商小于被除数。
五、百分数
百分数的约分:百分数化成分数,写成分数形式,再约分。
分数表是一个数,也可以表示两个数的关系,百分数只表示两个数的关系,没有单位。
百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或者百分比。
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。
六、统计
条形统计图可以知道每个数量的多少。
折现统计图可以知数量的增减,
扇形统计图可以知道部分和总量的关系。
初三圆总结 第4篇
1、在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的封闭曲线叫做圆。固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O”
2、与圆有关的概念
(1)弦和直径(连结圆上任意两点的`线段BC叫做弦,经过圆心的弦AB叫做直径)
(2)弧和xxx(圆上任意两点间的部分叫做弧,圆的任意一条直径的两个端点分圆成两条 弧,每一条弧都叫做xxx)
(3)等圆(半径相等的两个圆叫做等圆)
3、点和圆的位置关系:
如果P是圆所在平面内的一点,d 表示P到圆心的距离,r表示圆的半径,则:
(1)d (2)d=r →圆上 (3)d>r →圆外 4、xxx的外接圆 经过xxx的三个顶点的圆叫做xxx的外接圆,外接圆的圆心叫做xxx的外心,xxx叫做圆的内接xxx。xxx的外心到各顶点距离相等。 一个xxx有且仅有一个外接圆,但一个圆有无数内接xxx。 5、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论: (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)平分弧的直径,垂直平分弧所对的弦。 6、圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 7、圆周角定理: 一条弧所对的圆周角等于它所对的 圆心角的一半 。 推论:xxx(或直径)所对的圆周角是 直角,90°圆周角所对的弦是 直径 。 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等。 8、弧长及扇形的面积圆锥的侧面积和全面积 (1)弧长公式:lnr 180 nr21lr(2)扇形的面积公式:3602 (3)圆锥的侧面积公式:rl (4)圆锥的表面积公式:rlr 9、圆与圆的位置关系 ①两圆外离 d﹥R+r ②两圆外切 d=R+r ③两圆相交 R-r﹤d﹤R+r(R﹥r) ④两圆内切 d=R-r(R﹥r) ⑤两圆内含 d﹤R-r(R﹥r) 圆的初步认识 一、圆及圆的相关量的定义(28个) 1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。 2.圆上任意两点间的部分叫做圆弧,简称弧。大于xxx的弧称为优弧,小于xxx的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。 3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 4.过xxx的三个顶点的圆叫做xxx的外接圆,其圆心叫做xxx的外心。和xxx三边都相切的圆叫做这个xxx的内切圆,其圆心称为内心。 5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。 6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。 7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。 二、有关圆的字母表示方法(7个) 圆--⊙ xxx 弧--⌒ 直径d 扇形弧长/圆锥母线l 周长C 面积S三、有关圆的基本性质与定理(27个) 1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离): P在⊙O外,POP在⊙O上,PO=r;P在⊙O内,PO 2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。 5.一条弧所对的圆周角等于它所对的圆心角的一半。 6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 7.不在同一直线上的3个点确定一个圆。 8.一个xxx有唯一确定的外接圆和内切圆。外接圆圆心是xxx各边垂直平分线的交点,到xxx3个顶点距离相等;内切圆的圆心是xxx各内角平分线的交点,到xxx3边距离相等。 9.直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离): AB与⊙O相离,POAB与⊙O相切,PO=r;AB与⊙O相交,PO 10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。 11.圆与圆的位置关系(设两圆的半径分别为R和r,且Rr,圆心距为P): 外离P外切P=R+r;相交R-r 三、有关圆的计算公式 1.圆的周长C=2d 2.圆的面积S=s=3.扇形弧长l=nr/180 4.扇形面积S=n/360=rl/2 5.圆锥侧面积S=rl 四、圆的方程 1.圆的标准方程 在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是 (x-a)^2+(y-b)^2=r^2 2.圆的一般方程 把圆的`标准方程展开,移项,合并同类项后,可得圆的一般方程是 x^2+y^2+Dx+Ey+F=0 和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2 相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r. 五、圆与直线的位置关系判断 链接:圆与直线的位置关系(一.5) 平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是 讨论如下2种情况: (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0], 代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0. 利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下: 如果b^2-4ac0,则圆与直线有2交点,即圆与直线相交 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切 如果b^2-4ac0,则圆与直线有0交点,即圆与直线相离 (2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴) 将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2 令y=b,求出此时的两个x值x1,x2,并且我们规定x1 当x=-C/Ax2时,直线与圆相离 当x1 当x=-C/A=x1或x=-C/A=x2时,直线与圆相切 圆的定理: 1不在同一直线上的三点确定一个圆。 2垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 1圆的两条平行弦所夹的弧相等 3圆是以圆心为对称中心的中心对称图形 4圆是定点的距离等于定长的点的集合 5圆的内部可以看作是圆心的距离小于半径的点的集合 6圆的外部可以看作是圆心的距离大于半径的点的集合 圆定义: (1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。 (2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。 圆心: (1)如定义(1)中,该定点为圆心 (2)如定义(2)中,绕的那一端的端点为圆心。 (3)圆任意两条对称轴的交点为圆心。 (4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。 注:圆心一般用字母O表示 直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。 半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。 圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。 圆的半径或直径决定圆的大小,圆心决定圆的位置。 圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。 圆的周长与直径的比值叫做圆周率。圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈。 直径所对的圆周角是直角。90°的圆周角所对的弦是直径。 圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2,用字母S表示。 一条弧所对的圆周角是圆心角的二分之一。 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。 在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。 在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。 周长计算公式 1.、已知直径:C=πd 2、已知半径:C=2πr 3、已知周长:D=cπ 4、圆周长的一半:12周长(曲线) 5、xxx的长:12周长+直径 面积计算公式: 1、已知半径:S=πr平方 2、已知直径:S=π(d2)平方 3、已知周长:S=π(c2π)平方 点、直线、圆和圆的位置关系 1.点和圆的位置关系 ①点在圆内<=>点到圆心的距离小于半径 ②点在圆上<=>点到圆心的距离等于半径 ③点在圆外<=>点到圆心的距离大于半径 2.过三点的圆不在同一直线上的三个点确定一个圆。 3.外接圆和外心经过xxx的三个顶点可以做一个圆,这个圆叫做xxx的外接圆。外接圆的圆心是xxx三条边垂直平分线的交点,叫做xxx的外心。 4.直线和圆的位置关系 相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。 相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。 相离:直线和圆没有公共点叫这条直线和圆相离。 5.直线和圆位置关系的性质和判定 如果⊙O的半径为r,圆心O到直线l的距离为d,那么 ①直线l和⊙O相交<=>d<> ②直线l和⊙O相切<=>d=r; ③直线l和⊙O相离<=>d>r。 圆和圆定义: 两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。 两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。 两个圆有两个交点,叫做两个圆的相交。 两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。 两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。 原理:圆心距和半径的数量关系: 两圆外离<=>d>R+r两圆外切<=>d=R+r两圆相交<=>R-r<>=r) 两圆内切<=>d=R-r(R>r)两圆内含<=>dr) 正多边形和圆 1、正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。 2、正多边形与圆的关系: (1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。 (2)这个圆是这个正多边形的外接圆。 3、正多边形的有关概念: (1)正多边形的中心——正多边形的外接圆的圆心。 (2)正多边形的半径——正多边形的外接圆的半径。 (3)正多边形的边心距——正多边形中心到正多边形各边的距离。 (4)正多边形的中心角——正多边形每一边所对的外接圆的圆心角。 4、正多边形性质: (1)任何正多边形都有一个外接圆。 (2)正多边形都是轴对称图形,当边数是偶数时,它又是中心对称图形,正n边形的对称轴有n条。(3)边数相同的正多边形相似。 函数部分: 易错点1:各个待定系数表示的的意义。 易错点2:熟练掌握各种函数解析式的求法,一般情况下有几个的待定系数就要几个点的坐标代入。 易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。 易错点4:利用函数图象进行分类(平行四边形、相似、直角xxx、等腰xxx)以及分类的求解方法。 易错点5:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。 易错点6:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。 易错点1:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。 易错点2:对垂径定理的理解不够,不会正确添加辅助线运用直角xxx进行解题。 易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题以及对切线的判定方法两种方法使用不熟练。 易错点4:与圆有关的位置关系把握好 d 与 R之间的关系求解。 易错点5:圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角,90 度的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。 易错点6:圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转化关系。 旋转与相似: 易错点1:对于常见旋转模型不熟悉,不能通过题目判断出旋转特征。 易错点2:相似对应关系不明确时注意分类讨论。 易错点3:线段乘积转比例时,注意比例的顺序。 易错点4:常见几何条件运用要熟练、比如中点、角平分线、垂直平分线、等腰直角xxx、等边xxx、线段的和差,角度的二倍关系、平行等条件,要熟记相应的辅助线。 易错点5:过于依赖图形,从图中看着像的结论揪住不放,但实际是错误的。 易错点6:旋转方向要看清楚,分清顺时针和逆时针。 锐角三角函数: 易错点1:应用三角函数定义时,要保证直角xxx这个前提. 易错点2:在求解直角xxx的有关问题时,要画出图形,以利于分析解决问题. 易错点3:选择关系式时,要尽量利用原始数据,以防止“累积误差”. 易错点4:遇到不是直角xxx的图形时,要添加适当的辅助线,将其转化为直角xxx求解. 1.圆的标准方程 在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是:(x-a)^2+(y-b)^2=r^2 2.圆的一般方程 把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是:x^2+y^2+Dx+Ey+F=0 和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。 相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r。 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 xxx两边的和大于第三边 16 推论 xxx两边的差小于第三边 17 xxx内角和定理 xxx三个内角的和等于180° 18 推论1 直角xxx的两个锐角互余 19 推论2 xxx的一个外角等于和它不相邻的两个内角的和 20 推论3 xxx的一个外角大于任何一个和它不相邻的内角 21 全等xxx的对应边、对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个xxx全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个xxx全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个xxx全等 25 边边边公理(SSS) 有三边对应相等的两个xxx全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角xxx全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰xxx的性质定理 等腰xxx的两个底角相等 (即等边对等角) 31 推论1 等腰xxx顶角的平分线平分底边并且垂直于底边 32 等腰xxx的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边xxx的各角都相等,并且每一个角都等于60° 34 等腰xxx的判定定理 如果一个xxx有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的xxx是等边xxx 36 推论 2 有一个角等于60°的等腰xxx是等边xxx 37 在直角xxx中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角xxx斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46 勾股定理 直角xxx两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47 勾股定理的逆定理 如果xxx的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个xxx是直角xxx 48 定理 四边形的内角和等于360° 49 四边形的外角和等于360° 50 多边形内角和定理 n边形的内角的和等于(n-2)×180° 51 推论 任意多边的外角和等于360° 52平行四边形性质定理1平行四边形的对角相等 53平行四边形性质定理2平行四边形的对边相等 54 推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60 矩形性质定理1 矩形的四个角都是直角 61 矩形性质定理2 矩形的对角线相等 62 矩形判定定理1 有三个角是直角的四边形是矩形 63 矩形判定定理2 对角线相等的平行四边形是矩形 64 菱形性质定理1 菱形的四条边都相等 65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66 菱形面积=对角线乘积的一半,即S=(a×b)÷2 67 菱形判定定理1 四边都相等的四边形是菱形 68 菱形判定定理2 对角线互相垂直的平行四边形是菱形 69 正方形性质定理1 正方形的四个角都是直角,四条边都相等 70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71 定理1 关于中心对称的两个图形是全等的 72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75 等腰梯形的两条对角线相等 76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77 对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过xxx一边的中点与另一边平行的直线,必平分第三边 81 xxx中位线定理 xxx的中位线平行于第三边,并且等于它的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b 86平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 87 推论平行于xxx一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理 如果一条直线截xxx的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于xxx的第三边 89平行于xxx的一边,并且和其他两边相交的直线,所截得的xxx的三边与原xxx三边对应成比例 90 定理平行于xxx一边的直线和其他两边(或两边的延长线)相交,所构成的xxx与原xxx相似 91 相似xxx判定定理1 两角对应相等,两xxx相似(ASA) 92 直角xxx被斜边上的高分成的两个直角xxx和原xxx相似 93 判定定理2 两边对应成比例且夹角相等,两xxx相似(SAS) 94 判定定理3 三边对应成比例,两xxx相似(SSS) 95 定理 如果一个直角xxx的斜边和一条直角边与另一个直角xxx的斜边和一条直角边对应成比例,那么这两个直角xxx相似 96 性质定理1 相似xxx对应高的比,对应中线的比与对应角平分线的比都等于相似比 97 性质定理2 相似xxx周长的比等于相似比 98 性质定理3 相似xxx面积的比等于相似比的平方 99 xxx角的正弦值等于它的余角的余弦值,xxx角的余弦值等于它的余角的正弦值 100 xxx角的正切值等于它的余角的余切值,xxx角的余切值等于它的余角的正切值 1、圆心:圆中心一点叫做圆心。用字母“O”来表示。半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。 2、圆心确定圆的位置,半径确定圆的大小。 3、在同一个圆内,所有的半径都相等,所有的直径都相等。 在同一个圆内,有无数条半径,有无数条直径。 在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:d=2r r=2(1)d 4、圆的周长:围成圆的曲线的长度叫做圆的周长。 5、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母π表示。圆周率是一个无限不循环小数。在计算时,取π≈。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。 6、圆的周长公式:C=πd或C=2πr 7、圆的面积:圆所占平面的大小叫圆的面积。 8、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积=πr×r=πr2 9、圆的面积公式:S=πr2或者S=π(d÷2)2或者S=π(C÷π÷2)2 10、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。圆的面积和正方形面积的比是π:4。在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2。 11、在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。 12、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR2-πr2或S=π(R2-r2)。(其中R=r+环的宽度.) 13、环形的周长=外圆周长+内圆周长 14、xxx的周长等于圆的周长的一半加直径。xxx周长公式:C=πd÷2+d或C=πr+2r 15、xxx面积=圆面积÷2公式为:S=πr2÷2 16、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。 17、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。 例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。 18、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。 19、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几. 20、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小;当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小。 22、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 23、有1一条对称轴的图形有:角、等腰xxx、等腰梯形、扇形、xxx。有2条对称轴的图形是:长方形有3条对称轴的图形是:等边xxx有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。 24、直径所在的直线是圆的对称轴。 今天的内容就介绍到这里了。 大家都知道:圆是定点的距离等于定长的点的集合。接下来导师为大家带来的是初中数学知识点总结之圆,请大家认真记忆了。 1、圆的内部可以看作是圆心的距离小于半径的点的集合 2、圆的外部可以看作是圆心的距离大于半径的点的集合 3、同圆或等圆的半径相等 4、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 5、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 6、到已知角的两边距离相等的点的轨迹,是这个角的平分线 7、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 8、定理 不在同一直线上的三点确定一个圆。 9、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 10、推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心, 并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 11、推论2 圆的两条平行弦所夹的弧相等 大家看过初中数学知识点总结之圆后,想必同学们都已经熟记了吧。接下来还有更多更全的初中数学知识讯息尽在。 圆 1、定义:圆是到定点的距离等于定长的点的集合 2、点与圆的位置关系: 如果⊙O的半径为r,点P到圆心O的距离为d,那么 点P在圆内,则dr; 点P在圆上,则dr; 点P在圆外,则dr;反之亦成立。 圆的对称性 一、圆是中心对称图形,圆心是它的对称中心。 定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。 圆心角的度数与它所对的弧的度数相等。 二、圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 圆周角 定义:顶点在圆上,并且两边都和圆相交的角叫做圆周角 定理:同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。 定理:直径(或xxx)所对的圆周角是直角。90o的圆周角所对的弦是直径。 确定圆的条件 结论:不在同一条直线上的三点确定一个圆 xxx的外接圆(xxx的外心):xxx的外心是xxx中3边垂直平分线的交点,xxx的外心到xxx各顶点的距离相等。 注:直角xxx的外心是斜边的中点,外接圆的半径等于斜边的一半。 直线与圆的位置关系 一、三种位置关系:相交、相切、相离 如果⊙O的半径为r,圆心O到直线l的距离为d,那么 直线l与⊙O相交,则dr; 直线l与⊙O相切,则dr; 直线l与⊙O相离,则dr;反之亦成立。 二、圆的切线的性质及判定 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 两种方法:连半径,证垂直;作垂直,证半径 定理:圆的切线垂直于过切点的半径 xxx的内切圆(xxx的内心):xxx的内心是xxx中3条角平分的交点,xxx的内心到xxx各边的距离相等。 注:求xxx的内切圆的半径通常用面积法,特殊地,直角xxx内切圆的半径=a?b?c(其中c为斜边) 2 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 圆与圆的位置关系 五种位置关系:外离、外切、相交、内切、内含 阅读材料:如果两个圆相切,那么切点一定在连心线上相交两圆的连心线垂直平分两圆的公共弦。 正多边形与圆 各边相等、各角也相等的多边形叫做正多边形。 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。 注:与正多边形有关的计算 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 圆周角定理推论: 圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。 ①圆周角度数定理:圆周角的度数等于它所对的弧的度数的一半。 ②同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半。 ③同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等。(不在同圆或等圆中其实也相等的。注:仅限这一条。) ④xxx(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径。 ⑤圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ⑥在同圆或等圆中,圆周角相等<=>弧相等<=>弦相等。 圆周运动 1、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。 2、描述匀速圆周运动快慢的物理量 (1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上 **匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变。 (2)角速度 :ω=φ/t(φ指转过的角度,转一圈φ为 ),单位 rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的 (3)xxx,频率f=1/T (4)线速度、角速度及周期之间的关系: 3、向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。 4、向心加速度:描述线速度变化快慢,方向与向心力的方向相同, 5,注意的结论: (1)由于 方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。 (2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。 (3)做匀速圆周运动的物体受到的合外力就是向心力。 6、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。 初中数学知识点圆总结 知识点: 一、圆 1、圆的有关性质 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。 由圆的意义可知: 圆上各点到定点(圆心O)的距离等于定长的点都在圆上。 就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。 圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。 圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫xxx,大于xxx的弧叫优弧;小于xxx的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。 圆心相同,半径不相等的两个圆叫同心圆。 能够重合的两个圆叫等圆。 同圆或等圆的半径相等。 在同圆或等圆中,能够互相重合的弧叫等弧。 二、过三点的圆 l、过三点的圆 过三点的圆的作法:利用中垂线找圆心 定理不在同一直线上的三个点确定一个圆。 经过xxx各顶点的圆叫xxx的外接圆,外接圆的圆心叫外心,这个xxx叫圆的内接xxx。 2、反证法 反证法的三个步骤: ①假设命题的结论不成立; ②从这个假设出发,经过推理论证,得出矛盾; ③由矛盾得出假设不正确,从而肯定命题的结论正确。 例如:求证xxx中最多只有一个角是钝角。 证明:设有两个以上是钝角 则两个钝角之和>180° 与xxx内角和等于180°矛盾。 ∴不可能有二个以上是钝角。 即最多只能有一个是钝角。 三、垂直于弦的直径 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。 弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。 推理2:圆两条平行弦所夹的弧相等。 四、圆心角、弧、弦、弦心距之间的关系 圆是以圆心为对称中心的中心对称图形。 实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。 顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。 推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。 五、圆周角 顶点在圆上,并且两边都和圆相交的角叫圆周角。 推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推理2:xxx(或直径)所对的圆周角是直角;90°的.圆周角所对的弦是直径。 推理3:如果xxx一边上的中线等于这边的一半,那么这个xxx是直角xxx。 由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。 六、圆的判定性质 1.不在同一直线上的三点确定一个圆。 2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平行弦所夹的弧相等 3.圆是以圆心为对称中心的中心对称图形 4.圆是定点的距离等于定长的点的集合 5.圆的内部可以看作是圆心的距离小于半径的点的集合 6.圆的外部可以看作是圆心的距离大于半径的点的集合 7.同圆或等圆的半径相等 8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。 11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 12.①直线L和⊙O相交 d ②直线L和⊙O相切 d=r ③直线L和⊙O相离 dr 13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 14.切线的性质定理 圆的切线垂直于经过切点的半径 15.推论1 经过圆心且垂直于切线的直线必经过切点 16.推论2 经过切点且垂直于切线的直线必经过圆心 17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角 18.圆的外切四边形的两组对边的和相等 外角等于内对角 19.如果两个圆相切,那么切点一定在连心线上 20.①两圆外离 dR+r ②两圆外切 d=R+r ③.两圆相交 R-rr) ④.两圆内切 d=R-r(Rr) ⑤两圆内含dr)初三圆总结 第5篇
初三圆总结 第6篇
初三圆总结 第7篇
初三圆总结 第8篇
初三圆总结 第9篇
初三圆总结 第10篇
初三圆总结 第11篇
初三圆总结 第12篇
初三圆总结 第13篇
初三圆总结 第14篇