八年级上册数学知识点总结人教版(合集6篇)

八年级上册数学知识点总结人教版 第1篇

中线

1、等腰xxx底边上的中线垂直底边,平分顶角;

2、等腰xxx两腰上的中线相等,并且它们的交点与底边两端点距离相等。

1、两边上中线相等的xxx是等腰xxx;

2、如果一个xxx的一边中线垂直这条边(平分这个边的对角),那么这个xxx是等腰xxx

角平分线

1、等腰xxx顶角平分线垂直平分底边;

2、等腰xxx两底角平分线相等,并且它们的交点到底边两端点的距离相等。

1、如果xxx的顶角平分线垂直于这个角的对边(平分对边),那么这个xxx是等腰xxx;

2、xxx中两个角的平分线相等,那么这个xxx是等腰xxx。

高线

1、等腰xxx底边上的高平分顶角、平分底边;

2、等腰xxx两腰上的高相等,并且它们的交点和底边两端点距离相等。

1、如果一个xxx一边上的高平分这条边(平分这条边的对角),那么这个xxx是等腰xxx;

2、有两条高相等的xxx是等腰xxx。

八年级上册数学知识点总结人教版 第2篇

分数的加减法

1、通分与xxx虽都是针对分式而言,但却是两种相反的变形。xxx是针对一个分式而言,而通分是针对多个分式而言;xxx是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来、

2、通分和xxx都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

4、通分的依据:分式的基本性质。

5、通分的关键:确定几个分式的公分母。

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最xxx母。

6、类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

7、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8、异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。

9、同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。

10、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。

11、异分母分式的加减运算,首先观察每个公式是否最简分式,能xxx的先xxx,使分式简化,然后再通分,这样可使运算简化。

12、作为最后结果,如果是分式则应该是最简分式。

八年级上册数学知识点总结人教版 第3篇

一、变量与函数

1.变量:在一个变化过程中,数值发生变化的量叫做变量。

2.常量:数值始终不变的量叫做 常量。

3.函数:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说y是x的函数,x是自变量。Y的值叫函数值。

4.函数解析式:表示x与y的函数关系的式子,叫函数解析式。自变量的取值不能使函数解析式的分母为0。

5.函数的图像:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象。

6.描点法画函数图像的步骤:①列表、②描点、③连线。

表示函数的方法:①列表法、②解析式法、③图像法。

二、一次函数

1.正比例函数:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。

2.正比例函数的图象与性质:

(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。

(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。

3.一次函数:一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数。当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例。

4.函数的图象与性质:

(1)一次函数y=kx+b(k,b为常数,且k≠0)的图象是一条直线,我们称它为直线 y=kx+b。 相当于由直线y=kx平移|b|个单位长度而得。

(2)性质:当k>0时,直线y= kx+b从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx+b从左向右下降,即随着 x的增大y反而减小。

5.求函数解析式的方法: 待定系数法(先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。)

八年级上册数学知识点总结人教版 第4篇

1 全等xxx的对应边、对应角相等

2边角边公理(SAS) 有两边和它们的夹角对应相等的两个xxx全等

3 角边角公理( ASA)有两角和它们的夹边对应相等的两个xxx全等

4 推论(AAS) 有两角和其中一角的对边对应相等的两个xxx全等

5 边边边公理(SSS) 有三边对应相等的两个xxx全等

6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角xxx全等

7 定理1 在角的平分线上的点到这个角的两边的距离相等

8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

9 角的平分线是到角的两边距离相等的所有点的集合

10 等腰xxx的性质定理 等腰xxx的两个底角相等 (即等边对等角)

11 推论1 等腰xxx顶角的平分线平分底边并且垂直于底边

12 等腰xxx的顶角平分线、底边上的中线和底边上的高互相重合

13 推论3 等边xxx的各角都相等,并且每一个角都等于60°

14 等腰xxx的判定定理 如果一个xxx有两个角相等,那么这两个角所对的边也相等(等角对等边)

15 推论1 三个角都相等的xxx是等边xxx

16 推论 2 有一个角等于60°的等腰xxx是等边xxx

17 在直角xxx中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

18 直角xxx斜边上的中线等于斜边上的一半

19 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

20 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

初二数学求定义域口诀

求定义域有讲究,四项原则须留意。

负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次。

限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。

负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次。

限制条件不唯一,不等式组求解集。

初中提高数学成绩诀窍

很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。这类问题都是学生在课堂上都以为自己听得懂就够了。

初中同学要首先对数学做一个认知,听得懂≠会做,会做≠拿的到分。听得懂只占你数学成绩的20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩。

只有听的懂理解了加上练,再加上多练,达到最后又快又准的做出来,这时候的数学成绩才会有长足的进步。

八年级上册数学知识点总结人教版 第5篇

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

八年级上册数学知识点总结人教版 第6篇

①实数比较大小

正数大于零,负数小于零,正数大于一切负数;

数轴上的两个点所表示的数,右边的总比左边的大;

两个负数,绝对值大的反而小。

②实数大小比较的几种常用方法

数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

求差比较:设a、b是实数 a-b>0a>b; a-b=0a=b; a-b<0a<b 。

求商比较法:设a、b是两正实数,

绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣a<b。

平方法:设a、b是两负实数,则 a2>b2a<b 。