二次方根总结(共5篇)

二次方根总结 第1篇

平方根的有关概念 例1:写出下列各数的算术平方根。 81 」 2 (1) ;(2)方;(3) -5 49 ?平方根 1. 定义:如果一个数的平方等于 a ,这个数就叫做a 的平方根(或二次方根)。即如果x 负平方根用“-2 a ”表示,根指数是2时,通常省略不写。 一 J. a 记作士 Pa ,读作“正、负根号 a ”。 实数 那么x 就叫做a 的平方根。如: _22 =4,所以4的平方根是_2 ; 9 25 所以 9 3 — 的平方根是 二—;02 = 0 ,所以 25 5 0的平方根是0。 2.表示方法 一个数a 的正的平方根,用符号“ 2 a ” 表示,a 叫做被开方数, 2叫做根指数, 如Va 记作需,读作“根号a ”,

温馨提示 ① 任何数的平方都不能为负数,所以负数没有平方根。 ② “ 5是25的平方根”这种说法是正确的,反过来说“ 25的平方根是5”就错了,因为“正 数有两个平方根”,所以必须说“ 25的平方根是土 5”。 ③求一个数的平方根就是把平方后等于这个数的所有数都求出来, 个数的平方根,只要把这个数平方,看其是否等于另一个数即可。 3?平方根的性质 (1 )一个正数a 有两个平方根,它们互为相反数,记作 a 。 (2) 零的平方根是零。 (3) 负数没有平方根。 厂温馨提示 条件。 例2:判断下列说法是否正确,并说明理由。 (1) 一 6的平方根是36;( 2)1的平方根是1;( 3)-9的平方根是—3 ;( 4) 361 二-19 ; (5) 9是一 9 2的算术平方根。 而判断一个数是不是另 ①a _ 0时, 、a 表示a 的算术平方根, -,a 表示a 的平方根。 ②因为负数没有平方根,所以被开方数 a _ 0。女口 x - 3中隐含着x-3_0,即x_ 3这一■ ③ G/a f=a (a H 0 ), J a 2=* a, a -a, a : 0. -0,

二次方根总结 第2篇

关于二次根式的知识点总结

1.二次根式:

一般地,式子a,(a0)叫做二次根式.注意:

(1)若a0这个条件不成立,则

(2)是一个重要的非负数,即;a ≥0. a不是二次根式;

2.重要公式:

(1)(a)2a(a0),

(2)a2aa(a0) ;注意使用a(a0). a(a0)

3.积的算术平方根:

abab(a0,b0),积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求.

4.二次根式的乘法法则:

abab(a0,b0).

5.二次根式比较大小的方法:

(1)利用近似值比大小;

(2)把二次根式的系数移入二次根号内,然后比大小;

(3)分别平方,然后比大小.

6.商的算术平方根:

式的算术平方根.

7.二次根式的除法法则:

(1)a(a0,b0); baa(a0,b0),商的算术平方根等于被除式的算术平方根除以除bb

(2)abab(a0,b0);

(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.

8.常用分母有理化因式:

a与a,b与ab,  mnb与manb,它们也叫互为有理化因式.

9.最简二次根式:

(1)满足下列两个条件的二次根式,叫做最简二次根式,

① 被开方数的因数是整数,因式是整式。

② 被开方数中不含能开的`尽的因数或因式;

(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;

(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;

(4)二次根式计算的最后结果必须化为最简二次根式.

10.二次根式化简题的几种类型:

(1)明显条件题;

(2)隐含条件题;

(3)讨论条件题.

11.同类二次根式:

几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.

12.二次根式的混合运算:

(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;

(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.形如a,(a0)的式子,叫做二次根式

(1)二次根式a中,被开方数必须是非负数。即a0

(2)二次根式a是一个非负数,即; ≥0.

二次方根总结 第3篇

【精选问题1】若x是实数,当x满足什么条件时,下列各式xxx.

(1)1x-6? (2)(2x+3)0?? (3)x+7?? (4)1x-1 (5)x2+

(6)x2-2x+2???? (7) (8)(5-x)- (9)(8-x)-

【精选问题2】求下列二次根式的值.

(1)(π)2 (2)a2+4a+4,其中a=-5

【精选问题3】化简下列二次根式:

(1)125???? (2)12a2 (a≥0)??? (3)113???? (4)m8n (n>0)??? (5)x32y (y<0)

【精选问题4】判断下列二次根式中,哪些是同类二次根式(先化简)

-45,??? 75,?? 613,?? 20, 5,

【测试训练】

一、填空题:

1.如果1-x在实数范围内xxx,那么x应满足的条件是___________.

2.式了x(x-3)=x?x-3成立的条件是_________.

在实数范围内xxx,x的取值范围是__________.

4.计算:(-4)2=__________;(2-5)2=__________;(π)2=__________.

5.如果x2=-x,那么x的取值范围是_________.

6.当m≥时,(4-2m)2=________.

7.当m<2时,化简1-x-x2-4x+4的结果是__________.

8.化简:750=_________.

9.如果最简二次根式2a-1与11-4a是同类二次根式,那么a=__________.

(a2-b2),75x3y3,x2+y2,2y2c中,是最简二次根式的有_____________________________.

二、选择题

11.以下各组中不是同类二次根式的是(??? ).

(A)8和2? (B)54和108

(C)8a和32a???? (D)63和112

12.在下列根式中最简二次根式的个数是(??? ).

a2+b2, 12, 15, 10, 3xy2, 3ab

(A)5?? (B)4?? (C)3??? (D)2

三、解答题

13.如果(27-x)2+y+13=0,求xy.

14.当m<0时,化简:|m|+m2+(m3) +m.

15.解不等式:2x-34+3<13+5x.

16.已知x+1x=6,求x+1x的值.

有了上文为大家推荐的二次根式及其性质练习题及答案,是不是助力不少呢?祝您学习愉快。

二次方根总结 第4篇

目 标

1. 熟练地运用二次根式的性质化简二次根式;

2. 会运用二次根式解决简单的实际问题;

3. 进一步体验二次根式及其运算的实际意义和应用价值。

教学设想

本节课的重点是:二次根式及其运算的实际应用;难点是:例7涉及多方面的知识和综合运用,思路比较复杂。

教 学 xxx序 与 策 略

一、预习检测:

1.解决节前问题:

如图,架在消防车上的云梯AB长为15m,AD:BD=1 :,云梯底部离地面的距离BC为2m。你能求出云梯的顶端离地面的距离AE吗?

归纳:

在日常生活和生产实际中,我们在解决一 些问题,尤其是涉及直角三角形边长计算的问题时经常用到二次根式及其运算。

二、合作交流:

1、:如图,扶梯AB的坡比(BE与AE的长度之比)为1:,滑梯CD的坡比为1:,AE= 米,BC= CD。一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路xxx(结果要求先化简,再取近似值,精确到米)

让学生有充分的时间阅读问题,并结合图形分析问题:(1)所求的路xxx实际上是哪些线段的和?哪些线段的长是已知的?哪些线段的长是未知的?它们之间有什么关系?(2)列出的算式中有哪些运算?能化简吗?

注意解题格式

教 学 xxx 序 与 策 略

三、巩固练习:

完成课本P17、1,组长检查反馈;

四、拓展提高:

1:如图是一张等腰三角形彩色纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条。(1)分别求出3张长方形纸条的长度。(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如右图,正方形美术作品的面积最大不能超过多少cm。

师生共同分析解题思路,请学生写出解题过xxx。

五、课堂小结:

1.谈一谈:本节课你有什么收获?

2.运用二次根式解决简单的实际问题时应注意的的问题

六、堂堂清

1: 作业本(2)

2:课本P17页:第4、5题选做。

二次方根总结 第5篇

定义: 式子 叫做二次根式.

对于 请同学们讨论论应注意的问题,引导学生总结:

(1)式子 只有在条件a≥0时才叫二次根式, 是二次根式吗? 呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次

根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.

例1 当a为实数时,下列各式中哪些是二次根式?

分析: , , , 、 、 、 四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此, 与 不是二次根式.

例2 x是怎样的实数时,式子 在实数范围xxx?

解:略.

说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 xxx.

例3  当字母取何值时,下列各式为二次根式:

(1) (2) (3) (4)

分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时, 是二次根式.

(2)-3x≥0,x≤0,即x≤0时, 是二次根式.

(3) ,且x≠0,∴x>0,当x>0时, 是二次根式.

(4) ,即 ,故x-2≥0且x-2≠0, ∴x>2.当x>2时, 是二次根式.

例4  下列各式是二次根式,求式子中的字母所满足的条件:

(1) ; (2) ; (3) ; (4)

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的.条件,进一步巩固二次根式的定义,.即: 只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.

解:(1)由2a+3≥0,得 .

(2)由 ,得3a-1>0,解得 .

(3)由于x取任何实数时都有|x|≥0,因此,|x|+>0,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.

(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

(三)小结(引导学生做出本节课学习内容小结)

1.式子 叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.

2.式子中,被开方数(式)必须大于等于零.

(四)练习和作业

练习:

1.判断下列各式是否是二次根式

分析:(2) 中, , 是二次根式;(5)是二次根式. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.

2.a是怎样的实数时,下列各式在实数范围内xxx?

五、作业

教材P.172习题11.1;A组1;B组1.

六、板书设计