霍尔效应实验报告总结(通用8篇)

xxx应实验报告总结 第1篇

一、实验目的及要求:

本实例是要创建边框为1像素的表格。

二、仪器用具

2、安装windows xp操作系统;建立iis服务器环境,支持asp。

4、安装acdsee、photoshop等图形处理与制作软件;

5、其他一些动画与图形处理或制作软件。

三、实验原理

创建边框为1像素的表格。

四、实验方法与步骤

1) 在文档中,单击表格“”按钮,在对话框中将“单元格间距”设置为“1”。

2) 选中插入的表格,将“背景颜色”设置为“黑色”(#0000000)。

3) 在表格中选中所有的单元格,在“属性”面版中将“背景颜色”设置为“白色”(#ffffff)。

4) 设置完毕,保存页面,按下“f12”键预览。

五、实验结果

六、讨论与结论

本实验主要通过整个表格和单元格颜色的差异来衬托出实验效果,间距的作用主要在于表现这种颜色差异。表格的背景颜色和单元格的背景颜色容易混淆,在实验中要认真判断,一旦操作错误则得不到实验的效果。“表格宽度”文本框右侧的表格的宽度单位,包括“像素”和“百分比”两种,容易混淆,要充分地理解这两种单位表示的意义才能正确地进行选择,否则就不能达到自己想要的效果,设置错误就会严重影响实验效果。

更多热门推荐:

1.大学化学实验报告

2.气垫导轨实验报告

3.全息照相实验报告

4.有机化学实验报告

5.国际贸易实务实验报告

6.精馏实验报告

7.无机化学实验报告

8.初中物理实验报告

9.声速测量实验报告

10.单摆实验报告

xxx应实验报告总结 第2篇

半导体中自旋轨道耦合及自旋xxx应

本文主要评述和介绍半导体微结构中自旋轨道耦合的研究和最近的研究进展.我们细致地讨论了半导体微结构中自旋轨道耦合的物理起源和窄带隙半导体量子阱中的自旋xxx应.我们发现目前国际上广泛采用的线性Rashba模型在较大的电子平面波矢处失效:即自旋轨道耦合导致的能带自旋劈裂不再随电子波矢的增加而增加,而是开始下降,即出现强烈的非线性行为.这种非线性的行为起源于导带和价带间耦合的减弱.这种非线性行为还会导致电子的D'yakonov-Perel'自旋弛豫速率在较高能量处下降,与线性模型的结果完全相反.在此基础上,我们构造统一描述电子和空穴自旋xxx应的.理论框架.我们的方法可以非微扰地计入自旋轨道耦合对本征自旋xxx应的影响.我们将此方法应用于强自旋轨道耦合的情形,即窄带隙CdHgTe/CdTe半导体量子阱.我们发现调节外电场或量子阱的阱宽可以作为导致量子相变和本征自旋xxx应的开关.我们的工作可能会为区别和实验验证本征自旋xxx应提供物理基础.

xxx应实验报告总结 第3篇

实验内容:

1. 保持 不变,使Im从到变化测量VH.

可以通过改变IS和磁场B的方向消除负效应。在规定电流和磁场正反方向后,分别测量下列四组不同方向的IS和B组合的VH,即

+B, +I

VH=V1

—B, +

VH=-V2

—B, —I

VH=V3

+B, -I

VH=-V4

VH = (|V1|+|V2|+|V3|+|V4|)/4

画出线形拟合直线图:

Parameter Value Error

------------------------------------------------------------

A

B

------------------------------------------------------------

R SD N P

------------------------------------------------------------

9 <

2.保持IS= ,测量Im—Vh关系

VH = (|V1|+|V2|+|V3|+|V4|)/4

Parameter Value Error

------------------------------------------------------------

A

B

------------------------------------------------------------

R SD N P

------------------------------------------------------------

9 <

基本满足线性要求。

2. 判断类型

经观察电流由A’向A流,B穿过向时电势上低下高所以载流子是正电荷空穴导电。

4.计算RH,n,σ,μ

线圈参数=5200GS/A;d=;b=;L=

取Im=;由线性拟合所得直线的斜率为(Ω)。

B=Im*5200GS/A=2340T;有 Ω。

若取d的单位为cm;

磁场单位GS;电位差单位V;电流单位A;电量单位C;代入数值,得RH =6762cm3/C。

n=1/RHe=。

=(S/m);

=(cm2/Vs)。

思考题:

1、若磁场不恰好与xxx元件片底法线一致,对测量结果有何影响,如果用实验方法判断B与元件发现是否一致?

答:若磁场方向与法线不一致,载流子不但在上下方向受力,前后也受力(为洛仑兹力的两个分量);而我们把洛仑兹力上下方向的分量当作合的洛仑兹力来算,导致测得的Vh比真实值小。从而,RH偏小,n偏大;σ偏大;μ不受影响。

可测量前后两个面的电势差。若不为零,则磁场方向与法线不一致。

2、能否用xxx元件片测量交变磁场?

答:不能,电荷交替在上下面积累,不会形成固定的电势差,所以不可能测量交变的磁场。

xxx应实验报告总结 第4篇

一、实验名称: xxx应原理及其应用

二、实验目的:

1、了解xxx应产生原理;

2、测量xxx元件的 、 曲线,了解xxx电压 与xxx元件工作电流 、直螺线管的励磁电流 间的关系;

3、学习用xxx元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度 及分布;

4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。

三、仪器用具:YX-04型xxx应实验仪(仪器资产编号)

四、实验原理:

1、xxx应现象及物理解释

xxx应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。

半导体样品,若在x方向通以电流 ,在z方向加磁场 ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场 ,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力 时电荷不断聚积,电场不断加强,直到 样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(xxx电压) 。

设 为xxx电场, 是载流子在电流方向上的平均漂移速度;样品的宽度为 ,厚度为 ,载流子浓度为 ,则有:

(1-1)

因为 , ,又根据 ,则

(1-2)

其中 称为xxx系数,是反映材料xxx应强弱的重要参数。只要测出 、 以及知道 和 ,可按下式计算 :

(1-3)

(1-4)

为xxx元件灵敏度。根据RH可进一步确定以下参数。

(1)由 的符号(xxx电压的正负)判断样品的导电类型。判别的方法是按图1所示的 和 的方向(即测量中的+ ,+ ),若测得的 <0(即A′的电位低于A的电位),则样品属N型,反之为P型。

(2)由 求载流子浓度 ,即 。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入 的修正因子(可参阅xxx、谢xxx《半导体物理学》)。

(3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 以及迁移率 之间有如下关系:

(1-5)

2、xxx应中的副效应及其消除方法

上述推导是从理想情况出发的,实际情况要复杂得多。产生上述xxx应的同时还伴随产生四种副效应,使 的测量产生系统误差,如图2所示。

(1)xxx好森效应引起的电势差 。由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势 。可以证明 。 的正负与 和 的方向有关。

(2)能斯特效应引起的电势差 。焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。与xxx应类似,该热扩散电流也会在3、4点间形成电势差 。若只考虑接触电阻的差异,则 的方向仅与磁场 的方向有关。

(3)里xxxxxx应产生的电势差 。上述热扩散电流的载流子由于速度不同,根据xxx好森效应同样的理由,又会在3、4点间形成温差电动势 。 的正负仅与 的方向有关,而与 的方向无关。

(4)不等电势效应引起的电势差 。由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一等势面上,只要有电流沿x方向流过,即使没有磁场 ,3、4两点间也会出现电势差 。 的正负只与电流 的方向有关,而与 的方向无关。

综上所述,在确定的磁场 和电流 下,实际测出的电压是xxx应电压与副效应产生的附加电压的代数和。可以通过对称测量方法,即改变 和磁场 的方向加以消除和减小副效应的影响。在规定了电流 和磁场 正、反方向后,可以测量出由下列四组不同方向的 和 组合的电压。即:

, :

, :

, :

, :

然后求 , , , 的代数平均值得:

通过上述测量方法,虽然不能消除所有的副效应,但 较小,引入的误差不大,可以忽略不计,因此xxx应电压 可近似为

(1-6)

3、直螺线管中的磁场分布

1、以上分析可知,将通电的xxx元件放置在磁场中,已知xxx元件灵敏度 ,测量出 和 ,就可以计算出所处磁场的磁感应强度 。

(1-7)

2、直螺旋管离中点 处的轴向磁感应强度理论公式:

(1-8)

式中, 是磁介质的磁导率, 为螺旋管的匝数, 为通过螺旋管的电流, 为螺旋管的长度, 是螺旋管的内径, 为离螺旋管中点的距离。

X=0时,螺旋管中点的磁感应强度

(1-9)

五、 实验内容:

测量xxx元件的 、 关系;

1、将测试仪的“ 调节”和“ 调节”旋钮均置零位(即逆时针旋到底),极性开关选择置“0”。

2、接通电源,电流表显示“”。有时, 调节电位器或 调节电位器起点不为零,将出现电流表指示末位数不为零,亦属正常。电压表显示“”。

3、测定 关系。取 =900mA,保持不变;xxx元件置于螺旋管中点(二维移动尺水平方向处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为,,…,,将 和 极性开关选择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表1。

4、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。

5、测定 关系。取 =10 mA ,保持不变;xxx元件置于螺旋管中点(二维移动尺水平方向处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为0,100,200,…,900 mA,将 和 极性开关择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表2。

6、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。

测量长直螺旋管轴向磁感应强度

1、取 =10 mA, =900mA。

2、移动水平调节螺钉,使xxx元件在直螺线管中的位置 (水平移动游标尺上读出),先从开始,最后到0cm点。改变 和 极性,记录相应的电压表读数 值,填入数据记录表3,计算出直螺旋管轴向对应位置的磁感应强度 。

3、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。

4、用公式(1-8)计算长直螺旋管中心的磁感应强度的理论值,并与长直螺旋管中心磁感应强度的测量值 比较,用百分误差的形式表示测量结果。式中 ,其余参数详见仪器铭牌所示。

六、 注意事项:

1、为了消除副效应的影响,实验中采用对称测量法,即改变 和 的方向。

2、xxx元件的工作电流引线与xxx电压引线不能搞错;xxx元件的工作电流和螺线管的励磁电流要分清,否则会烧坏xxx元件。

3、实验间隙要断开螺线管的励磁电流 与xxx元件的工作电流 ,即 和 的极性开关置0位。

4、霍耳元件及二维移动尺容易折断、变形,要注意保护,应注意避免挤压、碰撞等,不要用手触摸xxx元件。

七、 数据记录:KH=,N=3150匝,L=280mm,r=13mm

表1 关系 ( =900mA)

(mV) (mV) (mV) (mV)

表2 关系 ( =)

(mV) (mV) (mV) (mV)

0

100

200

300

400

500

600

700

800

900

表3 关系 =, =900mA

(mV) (mV) (mV) (mV) B ×10-3T

0

八、 数据处理:(作图用坐标纸)

九、 实验结果:

实验表明:xxx电压 与xxx元件工作电流 、直螺线管的励磁电流 间成线性的关系。

长直螺旋管轴向磁感应强度:

B=UH/KH*IS=

理论值比较误差为: E=

xxx应实验报告总结 第5篇

实验报告格式

一、实验报告知识述要

实验报告是以实验本身为研究对象,或者以实验作为主要研究手段而得出科研成果后所写出的科研文书。实验报告具有一般科研文书的科学性、实践性、规范性等特点。

(一)实验报告的概念和用途

实验报告是实验者在某项科研活动或专业学习中,用简洁准确的语言完整真实地记录、描述某项实验过程和结果的书面材料,是对实验工作的总结和概括,是整个实验工作不可或缺的组成部分,也是实验成果的重要表现形式。

在科研活动中,实验是形成、发展和检验科学理论或假设的重要方法,而实验报告是实验环节的理xxx,是实验工作的重要环节。实验报告具有情报交流和资料保存的作用,有利于不断积累研究资料,总结研究成果,提高实验者的观察能力及分析问题和解决问题的能力,培养理论联系实际的学风和实事求是的科学态度。

在专业学习中,实验报告是学生对实验过程中的实验原理、操作步骤、原始数据、测试结果等汇总的文字记录,是学生对整个实验过程进行总结的一种方式,也是特定专业实验教学的基本要求和重要组成部分。实验报告的写作可以激发学生的学习兴趣、端正学生的科研态度、培养学生独立分析和解决问题的能力、训练学生的综合思维能力和文字表达能力,是科学研究工作中撰写科研成果报告或科学论文的模拟训练,有益于学生今后的科学研究和实际工作。

(二)实验报告的特点

1.科学性

实验报告的科学性是指报告的材料真实、准确。内容正确、客观,论证严密、充分,经得起重复和实践的检验,结论具有普遍性、客观性。没有严格的科学性,实验报告也就失去了存在的价值和意义。

2.实践性

实验报告的实践性是指实验报告来自于科学实验活动,是必须认真撰写的实验记录和总结,是特定专业实验实践课程的基本环节和要求,具有鲜明的针对胜、可操作性、可重复性。

3.规范性

实验报告的规范性主要是指形式和规格上必须按照统一编排的标准来表达,这是科研活动自身的科学要求和信息时代发展的现实需要。只有这样,才能实现实验报告高效统一的记录、整理、检索、评价以及传播、交流等。

二、写作格式及要求

(一)写作格式

实验报告在实际运用中并没有固定不变的格式,一般包括以下内容:

1.标题

实验报告的标题即实验名称,是实验内容的高度概括,标题有单一式和复合式两种。前者如《验证欧姆定律》《“大学生德育教育途径与方法”课题研究实验报告》等,后者如《探索符合新课程理念的作文教学新思路D“以学为主”作文教学改革实验报告》《大豆化学品质检验D蛋白质测定》等。

教学中运用的自然科学方面的实验报告往往以“实验报告”或“xx课程实验报告”等作标题,而将“实验名称”作为内容中的一项。

2.署名和日期

xxx应实验报告总结 第6篇

一、实验名称: xxx应原理及其应用

二、实验目的:

1、了解xxx应产生原理;

2、测量xxx元件的 、 曲线,了解xxx电压 与xxx元件工作电流 、直螺线管的励磁电流 间的关系;

3、学习用xxx元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度 及分布;

4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。

三、仪器用具:YX-04型xxx应实验仪(仪器资产编号)

四、实验原理:

1、xxx应现象及物理解释

xxx应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。

半导体样品,若在x方向通以电流 ,在z方向加磁场 ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场 ,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力 时电荷不断聚积,电场不断加强,直到 样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(xxx电压) 。

设 为xxx电场, 是载流子在电流方向上的平均漂移速度;样品的宽度为 ,厚度为 ,载流子浓度为 ,则有:

(1-1)

因为 , ,又根据 ,则

(1-2)

其中 称为xxx系数,是反映材料xxx应强弱的重要参数。只要测出 、 以及知道 和 ,可按下式计算 :

(1-3)

(1-4)

为xxx元件灵敏度。根据RH可进一步确定以下参数。

(1)由 的符号(xxx电压的正负)判断样品的导电类型。判别的方法是按图1所示的 和 的方向(即测量中的+ ,+ ),若测得的 <0(即A′的电位低于A的电位),则样品属N型,反之为P型。

(2)由 求载流子浓度 ,即 。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入 的修正因子(可参阅xxx、谢xxx《半导体物理学》)。

(3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 以及迁移率 之间有如下关系:

(1-5)

2、xxx应中的副效应及其消除方法

上述推导是从理想情况出发的,实际情况要复杂得多。产生上述xxx应的同时还伴随产生四种副效应,使 的测量产生系统误差,如图2所示。

(1)xxx好森效应引起的电势差 。由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势 。可以证明 。 的正负与 和 的方向有关。

(2)能斯特效应引起的电势差 。焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。与xxx应类似,该热扩散电流也会在3、4点间形成电势差 。若只考虑接触电阻的'差异,则 的方向仅与磁场 的方向有关。

(3)里xxxxxx应产生的电势差 。上述热扩散电流的载流子由于速度不同,根据xxx好森效应同样的理由,又会在3、4点间形成温差电动势 。 的正负仅与 的方向有关,而与 的方向无关。

(4)不等电势效应引起的电势差 。由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一等势面上,只要有电流沿x方向流过,即使没有磁场 ,3、4两点间也会出现电势差 。 的正负只与电流 的方向有关,而与 的方向无关。

综上所述,在确定的磁场 和电流 下,实际测出的电压是xxx应电压与副效应产生的附加电压的代数和。可以通过对称测量方法,即改变 和磁场 的方向加以消除和减小副效应的影响。在规定了电流 和磁场 正、反方向后,可以测量出由下列四组不同方向的 和 组合的电压。即:

, :

, :

, :

, :

然后求 , , , 的代数平均值得:

通过上述测量方法,虽然不能消除所有的副效应,但 较小,引入的误差不大,可以忽略不计,因此xxx应电压 可近似为

(1-6)

3、直螺线管中的磁场分布

1、以上分析可知,将通电的xxx元件放置在磁场中,已知xxx元件灵敏度 ,测量出 和 ,就可以计算出所处磁场的磁感应强度 。

(1-7)

2、直螺旋管离中点 处的轴向磁感应强度理论公式:

(1-8)

式中, 是磁介质的磁导率, 为螺旋管的匝数, 为通过螺旋管的电流, 为螺旋管的长度, 是螺旋管的内径, 为离螺旋管中点的距离。

X=0时,螺旋管中点的磁感应强度

(1-9)

xxx应实验报告总结 第7篇

关键词:单片机系统;综合实践课程;实践教学

abstract: single-chip system design is a practical application and have a strong curriculum. in order to fully stimulate the creativity of students so that students are familiar with single-chip application system and development process, to master the single-chip design and development of the principle, we created an integrated single-chip system design practice courses. this article describes the practice of integrated curriculum implementation plan, gives a typical example of the design. after several years of teaching practice, this course has been a good teaching results.

key words: single-chip system; the practice of integrated curriculum; teaching practice

1 前言

单片机系统设计是一门实践性、应用性很强的课程。传统的单片机系统设计实验教学,具有:①实验应用机会少;②缺乏具体的实验教学内容和完善的考试、考核方法;③验证性多,创新性少;④实验教学内容与实践应用脱节的弊端[1]。这样的教学模式和方法,很难让学生完全掌握单片机系统设计的基本原理和开发方法,更不用说培养学生的创新能力。因此,为了培养和训练学生具备独立设计简单的单片机应用系统、编写系统控制程序的能力和技能,激发学生的创造力,我校在学生完成了《单片机系统设计》的理论课和汇编程序设计、七段数码显示、键盘扫描、ad转换、串行通讯等实验教学后,特开设了为期2周的综合实践教学环节。此教学环节让学生完成一个单片机系统的设计、开发、调试的完整过程,整个综合实践教学环节完成后,学生对单片机系统的学习和应用兴趣更浓了,而且具备了自行设计、开发简单的单片机系统的能力。

2 任务与要求

利用伟福lab6000系列单片机仿真实验系统构成简单实用的单片机系统,要求如下:

(1)充分应用mcs-51系列微处理器和伟福lab6000系列单片机仿真实验系统所提供的硬件资源,自由选题实现一个简单实用的单片机系统。

(2)要求具备必需的人机接口。

(3)可以选用汇编或c51语言进行控制程序开发。

设计的系统性能如下:

(1)系统运行稳定,具有一定的抗干扰和故障自测能力。

(2)系统设计安全可靠,具有出错报警和应急关闭能力。

(3)系统精度达到一般民用品的基本要求。

(4)人机接口界面友好、直观、操作简单。

另外,我们提供了一些选题供学生拓展思路,主要有:

(1)出租车计价器。

(2)温度控制系统。

(3)可编程交通灯系统。

(4)pwm电机调

速系统。

(5)数字温度计。

(6)数字频率计。

3 设计范例

pwm电机调速系统

pwm电机调速系统如图1所示,系统包含电机驱动电路和测速电路,两者构成闭环系统。电机驱动采用脉宽pwm调压电路,测速电路的核心部件是xxx元件。

图1 pwm直流电机调速系统原理图[2]

xxx元件是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。在外磁场的作用下,当磁感应强度超过xxx元件导通阈值bop时,xxx元件输出管导通,输出低电平。若外加磁场的b值降低到brp时,输出管截止,输出高电平。在直流电机的转盘上粘贴着一枚小磁铁,xxx元件安装在转盘附近,每当磁铁靠近xxx元件时xxx元件导通,输出低电平,远离时xxx元件截至,输出高电平。这样,直流电机转动一圈,xxx元件就会输出一个脉冲,通过这个原理能够测出电机的转速。

pwm是单片机系统中常用的模拟量输出方法,通过外接的转换电路,可以将脉冲的占空比转化成电压。直流电机的转速和驱动电压呈近似线形关系,改变脉冲的占空比,就可以改变直流电机的转速。

系统结构图如图2,闭环工作时,测速电路测得的转速和给定的转速相减获得差值e,根据差值e运用pid增量控制算法获得控制量,即占空比,通过mcs-51的口线输出给定占空比的脉冲,再通过转换电路转化成电压来驱动直流电机。系统控制算法采用增量型pid控制算法,如果k时刻电机当前转速是y(k),给定转速是r(k),pid控制器输入信号为e(k),输出信号为u(k),则离散的pid递推算法如下:

图2 pwm直流电机调速系统结构图

数字温度计数字温度计的核心电路——温度传感器调理电路如图3所示,温度传感器采用负温度系数的热敏电阻(xxx),xxx的阻值随着温度的上升而非线性下降,具体温度-阻值特性为

(4)

式中,rt 、 rt0是温度分别为t、t0 时的电阻值;b为负温度系数热敏电阻的材料常数[3]。

固定电阻和xxx组成的电阻桥输出电压随xxx阻值的变化而变化,这种变化经过差动放大器的放大后送给ad转换器转换成数字量,具体转换遵循以下公式:

(1) 电桥输出电压u

(5)

(2) 差动放大器输出电压 u'(一般r7=r8,r9=r10)

图3 数字温度计原理图[2]

一般情况下,会事先根据xxx的温度-阻值特性计算出一张温度-阻值对应表。根据ad转换的数字值逆运算获得当前xxx的阻值,再根据xxx的温度特性表运用分段查表和表项间线性运算就可以获得当前温度值,把当前温度在输出设备(如七段数码管、lcd)上显示出来就构成了完整的数字温度计。本范例也可在其他温度测量的系统中应用。

出租车计价器

出租车计价器是一个较实用的设计范例,它的结构如图4。出租车计价器包含里程测量电路、实时时钟电路和人机接口。

出租车计价器里程测量的核心部件是xxx元件,具体电路和图1的测速电路一样。在轮胎的转轴上粘贴了6个小磁铁,轮胎转动一圈,xxx元件就会输出6个脉冲,对脉冲进行计数就可以获得轮胎转动的圈数,圈数乘以轮胎的周长就可以获得车辆行驶的里程数。

图4 出租车计价器结构框图

一般情况下,出租车白天和晚上的里程单价并不一样,因此需要一个实时时钟来获得当前时间。ds1307是一个i2c总线的实时时钟(rtc),在外部电池的供电下,它能提供高精度的年月日时分秒bcd码时间。另外,它还包含56字节的非易失性sram(nv

sram),可以用来保存系统的设置信息。

显示设备可以采用七段数码管或lcd,用来显示当前时间、行驶里程数、里程单价、和行驶

里程价格等信息。还需要少量的按键或矩阵式键盘用于输入里程单价、开始计价、清零、时间设置等操作。

4 实施过程

根据任务与要求进行总体规划与设计

这个过程包括:

⑴ 课题选择。

⑵ 硬件模块的选择和设计。

⑶ 软件整体流程的设计。

⑷ 查找各种所需资料。

综合实践课题题目是不是新颖,是不是能够激发学生的创造性和好奇心,直接影响学生实验的积极性,有的学生觉得做实验非常无聊,就是因为他们的好奇心和热情没有被激发起来。而集知识性、趣味性、创造性于一体,能应用所学知识解决具体问题的综合实践课题,是本综合实践的最大亮点,也是本教学环节区别于其他教学环节的标志。我们要求学生思考在实际生活中能应用单片机系统技术能解决的具体问题,并且考虑伟福lab6000系列单片机仿真实验系统所能提供的硬件资源,选择一个有自己特色、能在两周内独立完成的题目,题目要求新颖,鼓励创造性的思维,并且能解决实际生活中的具体问题。

受限于实验条件,硬件设计无法完全按照单片机系统设计的一般方法和标准步骤来实施。在教学过程中,我们要求学生可以根据伟福lab6000系列单片机仿真实验系统所提供的硬件资源自主地完成硬件部分的理论设计,也可以不完全局限于此实验平台进行理论设计。理论设计完全遵循单片机系统设计的一般流程,学生自己查阅资料,设计硬件电路图。指导老师对硬件部分的理论设计进行评审后,再根据具体的实验平台指导学生完成课题。

软件设计可以采用汇编语言或keil c51高级语言开发环境来实现,这两种软件开发环境是当前mcs-51系列单片机系统开发的主流环境。根据学生选题的特点,指导学生选择较为容易实现的开发环境。

根据总体规划实施软硬件的开发与设计

这个过程包括:

⑴ 硬件连接。

⑵ 软件编程。

⑶ 软硬件联调。

在这一过程中主要培养学生的硬件设计能力、编程能力和积累软硬件调试经验,熟练掌握单片机系统中人机接口的设计、控制算法设计、硬件驱动程序设计,体会理论与实践之间的差别,对单片机系统的设计与实现由理性认识转化为感性认识,激发学生的求知欲望,锻炼学生克服困难解决问题的能力。

交流总结

在2周的综合实践中抽出一天时间让能力较强的学生陈述他的设计思想和设计过程、设计中的难题和解决方法以及自己的心得体会。让进展不顺的学生提出他在设计中没能解决的难题,全班同学共同讨论,集思广益,找到解决问题的方法。这样可以使学生互相学习,取长补短,拓宽知识面,活跃思维,能在以后的工作和学习中更好地完成任务。

完成实践报告及验收评分

最后两天是综合实践报告的完成阶段,在进行了两周的综合实践以后有必要好好地总结一下,把自己在综合实践中所学到的知识以文字的形式表述出来,这样更有助于水平和能力的提高。

实践报告完全按照毕业论文要求书写,包含中英文摘要、设计任务与要求、系统结构及工作原理、主要单元电路的设计过程、控制软件的编写及调试、测试数据及调试中故障分析、收获和体会、参考文献等部分。要求学生重点讲述清楚故障分析和收获体会。

综合实践成绩由平时表现、实践报告、设计成果、创新点4部分组成,成绩构成比例是2:3:4:1[4]。

5 效果

> 经过几年的教学实践,单片机系统综合实践教学环节取得的效果主要体现在以下几个方面:

(1)让学生掌握了单片机系统设计的一般原理及其基本的实现过程,实现了从理论向实际的迁移,强化了学生所学的知识。

(2)让学生掌握了单片机系统硬件、软件设计的基本方法,具备了软硬件相结合的系统设计的基本能力和调试经验。

(3)本综合实践的课题真实性很强,让学生经历了单片机系统设计的全过程,提高了学生的研制开发能力和创新能力。

(4)本综合实践涉及到多学科、多知识点,是计算机软硬件知识的大综合。经过综合实践,学生运用所学知识分析解决问题的能力有了较大的提高,完成了多学科知识的融会贯通。

参考文献

xxx应实验报告总结 第8篇

电工电子技术实验课程的计划内实验项目是根据电工电子技术理论课程的教学内容安排所必须完成的实验项目,其目的是在理论知识的基础上,进一步加深和理解理论教学内容,如在学习基尔霍夫电流定律、支路电流法的理论知识之后,必须及时完成叠加原理及基尔霍夫电流定律的实验,强化对理论知识的理解。计划内实验项目就是原课程实验部分,以电工技术实验课程为例,计划实验项目如下:

(1)认识实验的目标是了解实验室电源配置、熟悉各类测量仪表的使用、掌握交直流电源使用的常识。

(2)电位、电压的测定及基尔霍夫电压定律的验证目标是掌握测量电路中各点电位的测量、加深理解电位与电压的异同点、验证基尔霍夫电压定律、正确使用直流电压表及万用表直流电压档测量电压。

(3)叠加原理及基尔霍夫电流定律的目标是掌握电流参考方向与实际方向的确定、验证基尔霍夫电流定律、加深叠加定理和齐次性的认识、正确使用直流电流表及万用表直流档测量直流电流。

选做实验项目

为了提高学生的自主学习能力和学习兴趣,实验室实行自由开放。电工电子技术实验课程根据不同的专业、班级、实验进度以及个人的爱好开设了选做实验项目,并计入课程考核总成绩。开设选做实验项目能适应不同学生的学习需求,提高了学生的学习兴趣和实践钻研能力。

创新型实验项目

创新型实验项目是指根据“电工电子技术”课程的教学内容,在教学中未涉及的知识,主要锻炼学生的自主学习和探索研究的能力,要求对教学实验进行改进和创新,包括仪器的创新、实验原理的迁移和创新、设计新的电路等。为培养学生的钻研精神、创新意识,锻炼学生的创新思维,学院拟建设专业的创新实验室,专门开设了创新型实验项目,设立了专科生创新基金,每年提供一定的创新研究经费,学生可以根据兴趣和爱好自行选定课题,申请项目和研究经费,同时寻求指导教师帮助,从事创新科研项目。

综合实验项目

综合实验项目是大连海洋大学职业技术学院的实验特色项目,将相关课程的实验内容整合、重构,避免内容重复,再给定实验目的、要求和实验条件,由学生自行设计实验方案并实施执行,内容涉及本课程的综合知识以及与本课程相关课程知识的实验。综合实验项目由教师给定实验项目或学生自主选择,在教师的指导下,学生独立完成整体项目的方案确定、规划、设计、实施。综合实验项目的实施,加强了学生综合运用所学理论指识的能力,提高了学生的综合设计与开发技能。

“电工电子技术”课程实验考核模式研究与实践

1“.电工电子技术”课程实验考核的组成

本课程的考核采用形成性评价与总结性评价相结合的方式进行。改变传统以期末考试卷面成绩定终身的课程评价方式,实践性教学环节的考核强调理论与实践一体化评价和能力目标评价,引导学生改变传统的学习方式,提高学生学习的主动性和积极性,以获得阶段性成果的方式,让学生取得成就感,树立自信心,提高学习兴趣。注重考核学生掌握电工技术基础知识和基本技能的程度以及所具有的相应工作岗位职业能力和水平,突出职业教育的教学评价特点。

实验考核作为实验教学的一个重要环节,不但要检验学生的实验结论,更重要的是要对学生的实践能力作客观评价,达到全面、客观检验学生实践操作能力的目的。“电工电子技术”课程的实验成绩由计划内实验成绩、选做实验成绩、创新实验成绩和综合实验成绩四部分组成。

(1)计划内实验成绩是根据学生的实验平时表现、实验操作、实验报告和期末考试评定,占总成绩的50%。

(2)自选实验成绩是根据自选实验的完成情况和自选实验项目的数量进行评定,占总成绩的20%。

(3)创新型实验成绩是根据学生的创新能力和设计项目的水平评定成绩,占总成绩的10%。

(4)综合性实验成绩是根据学生综合实验项目的规划、设计和实施情况评定成绩,占总成绩的20%。积极引导和鼓励学生参加国家、省、市举办的科技创新和各种电工电子技能大赛,对在参加创新项目和技能大赛中获奖的学生,允许不参加本课程的期末考试,免试课程的实验总成绩评定为优秀。

2“.电工电子技术”课程的实验考核方式

实验的考核指标难以量化,一直是实验教学过程的难点。为此,在教学过程中不断加强实验内容和实验考核的改革,经过多年的探索和实践,制定了与教学实验内容相适应,能综合评价学生实践能力的一套考核方法。具体的考核方式如下:

(1)计划内实验项目的考核。计划内实验项目采用分段式、多元化考核形式与方法,计划内实验项目的成绩占实验总成绩的50%,主要包括:平时表现、实验操作、实验报告和期末考试,分别占10%、15%、5%和20%。