分数乘法单元总结 第1篇
一、分数乘法
(一)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bcac+bc=(a+b)×c
二、分数乘法的解决问题
(xxx单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面
2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。
3、写数量关系式技巧:
(1)“的”相当于“×”“占”、“是”、“比”相当于“=”
(2)分率前是“的”:单位“1”的量×分率=分率对应量
(3)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量
三、分数除法
1、分数除法的意义:
分数除法与整数除法的意义相同,表示xxx两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;
(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
四、分数除法解决问题
(未知单位“1”的量(用除法):xxx单位“1”的几分之几是多少,求单位“1”的量。)
1、数量关系式和分数乘法解决问题中的关系式相同:
(1)分率前是“的”: 单位“1”的量×分率=分率对应量
(2)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量
2、解法:(建议:最好用方程解答)
(1)方程: 根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法): 分率对应量÷对应分率=单位“1”的量
3、求一个数是另一个数的几分之几:就 一个数÷另一个数
4、求一个数比另一个数多(少)几分之几:
①求多几分之几:大数÷小数?1 ②求少几分之几:1- 小数÷大数
或①求多几分之几(大数-小数)÷小数②求少几分之几:(大数-小数)÷大数
分数乘法单元总结 第2篇
一、分数除法的意义:
分数除法是分数乘法的逆运算,xxx两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:
除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。例 ÷3= × = 3÷ =3× =5
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c
②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)
③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a
三、分数除法混合运算
1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:
①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的'先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a±b)÷c=a÷c±b÷c
四、比:
两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= = 12∶20读作:12比20
注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)、 用比的前项和后项同时除以它们的最大公约数。
(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:
除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算
分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数
比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系
附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用
1、xxx单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)
2、未知单位“1”的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建议列方程答)
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几 (例:甲是15的 ,求甲是多少?15× =9)
乙=甲÷几分之几 (例:9是乙的 ,求乙是多少?9÷ =15)
几分之几=甲÷乙 (例:9是15的几分之几?9÷15= )(“是”字相当“÷”号,乙是单位“1”)
(2)甲比乙多(少)几分之几?
A 差÷乙= (“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15= = = )
B 多几分之几是: –1 (例: 15比9少几分之几?15÷9= -1= –1= )
C 少几分之几是:1– (例:9比15少几分之几?1-9÷15=1– =1– = )
D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是“+”少是“–”)
E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“–”)
(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是“+”少是“–”)
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
例如:xxx甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?
方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35
方法二:甲:56× =21 乙:56× =35
例如:xxx甲是21,甲、乙的比3∶5,求乙是多少?
方法一:21÷3=7 乙:5×7=35
方法二:甲乙的和21÷ =56 乙:56× =35
方法二:甲÷乙= 乙=甲÷ =21÷ =35
5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出xxx和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。
分数乘法单元总结 第3篇
每次上完公开课,我都会有这样的感想:如果让我再上一遍,我一定会这么上!从这节课中找到不足之处,然后再精雕细琢。可惜的是,我只能上一遍,要想上第二遍可能还要等上一年。所以,我要考虑全面,不能让这颗后悔药等到下一年。
解决问题是xxx校长的拿手课,xxx校长给我们做了两次解决问题的示范课,我从中也学到一些关于解决问题的处理方式。相比xxx校长的课堂,我更显得捉襟见肘,拿不出台面。不过我能够学习xxx校长扎实的教风,让学生都能学会这节课的知识点是我的教学目标。为了达到我的教学目标,又有一个问题扑面而来:是小组合作?是学生自己探究?是老师讲授?想来想去还是想让学生通过探究来解决问题,针对学生不会的知识点可以重点加以辅导。可是,在我让学生在课前预习时发现,好多学生对于单位“1”还是很糊涂。不明白为什么前后的两句话单位“1”变了,变了该怎么办呢?了解到学生对这道题目的一知半解,我想很有必要帮助学生理清这两句话的含义。于是,根据课本上小精灵的提示,能不能引导学生通过折纸的方式来加以理解?果不其然,学生在刚开始学习分数乘分数的算理时就已经掌握了折纸的方法,那么这次也是通过动手操作感受单位的变化。从这点可以克服摆着我们面前的困难,由此激发学生更多的探究欲望。
通过这次讲课,我也看到自己身上的不足之处。对于学生出现的错误回答,并没有足够的重视,让学生的错误回答擦出课堂思维的火花。如果让学生对错误进行讨论或者重新思考,那么学生对知识的把握会更加牢固。鼓励学生主动思考,而不是一味教学生如何去做,怎么面对,怎么处理这一类题目。
总之,今天的课堂改进之处还有很多,我会不断学习新教材,吸收新教法,让数学课堂充满思维火花!
分数乘法单元总结 第4篇
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:分数乘整数指的是第二个因数必须是整数,不能是分数。
例如: xxx: 求7个 的和是多少? 或表示: 的7倍是多少?
2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:一个数乘分数指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
例如: 表示: 求 的 是多少?
9 表示: 求9的 是多少?
A 表示: 求a的 是多少?
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。ab=c,当b 1时,ca.
一个数(0除外)乘小于1的数,积小于这个数。ab=c,当b 1时,c
一个数(0除外)乘等于1的数,积等于这个数。ab=c,当b =1时,c=a
注:在进行因数与积的大小比较时,要注意因数为0时的`特殊情况。
附:形如 的分数可折成( )
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:a(bc)=abac
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为1。
例如:ab=1则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为11=1
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、任意数a(a0),它的倒数为 ;非零整数a的倒数为 ;分数 的倒数是 。
6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
(六)分数乘法应用题 用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
1 =
例如:求25的 是多少? 列式:25 =15
甲数的 等于乙数,xxx甲数是25,求乙数是多少? 列式:25 =15
注:xxx单位1的量,求单位1的量的几分之几是多少,用单位1的量与分数相乘。
2、( 什么)是(什么 )的 。
( )= ( 1 )
例1: xxx甲数是乙数的 ,乙数是25,求甲数是多少?
甲数=乙数 即25 =15
(1)是的字中间的量乙数是 的单位1的量,即 是把乙数看作单位1,把乙数平均分成5份,甲数是其中的3份。
(2)是占比这三个字都相当于=号,的字相当于。
(3)单位1的量分率=分率对应的量
例2:甲数比乙数多(少) ,乙数是25,求甲数是多少?
甲数=乙数乙数 即2525 =25(1 )=40(或10)
3、巧找单位1的量:在含有分数(分率)的语句中,分率前面的量就是单位1对应的量,或者占是比字后面的量是单位1。
4、什么是速度?
速度是单位时间内行驶的路程。速度=路程时间 时间=路程速度 路程=速度时间
单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
5、求甲比乙多(少)几分之几?
多:(甲-乙)乙
少:(乙-甲)乙
分数乘法单元总结 第5篇
1、注重启发引导与学生的主动参与相结合
在本节课中,我信任学生对学好数学的愿望和潜能,把学习的主动权交还给学生,同时创设愉快、民主、活泼、开放的课堂气氛,尊重学生的人格,尊重学生对学习方法的选择,鼓励学生用自己的方法去掌握数学知识。如在推导分数乘法的意义过程中,让学生通通过计论、交流,发现分数乘法的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算等。在课堂中,我也积极地创设出有利于学生主动参与的教学情境,如写出几道分数乘法的计算题,让学生口述各题的意义,从而激发学生的学习兴趣,充分地调动学生学习积极性,给学生留有思考和探索的余地,让学生能在独立思考与合作交流中解决学习中的问题。
2、面向全体又尊重学生的个性差异,促进全面发展
新课标指出:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。在教学中,我注意面向全体学生,使所有学生在数学知识掌握、数学能力发展、思想品德及个性心理品质养成等方面都能有所发展。同时,由于学生的个性素质存在差异,教学中,我也尊重了学生的这种个性差异,要求不同的学生达到不同的学习水平。在本节课中,我有意识地提问学困生,直到他们都懂了才放手,这样既解决了学困生学习难的问题,帮助他们克服了学习上的自卑心理。。同时,对于一些学有余力的学生,我也为他们提供了发展的机会,难度比较大的题,让他们来解决或去帮助有需要的同学,这样既防止他们产生自满情绪,又让他们始终保持着强烈的求知欲望,使他们在完成这种任务的过程中获得更大的发展。
分数乘法单元总结 第6篇
小学数学的学习能力我认为主要是要有扎实的计算能力和敏捷的思维能力。分数乘法解决问题这节课中主要承载着对学生解决问题方法的引领同时也是为提高学生思考问题的能力提供了一个途径。在xxx、xxx校长、班老师还有全年级组数学老师的共同努力下我顺利的完成了这项任务。下面我就谈谈我的收获。
一、目标定位给一节课带来巨大的变化。
刚开始备课我们的教学目标放在解决“红萝卜地的面积是多少?”这个问题的方法和解决问题的一般步骤上“阅读与理解、分析与解答、检验与总结”仅仅局限在一道题的解答上,后来经过大家的指导做了调整,把课前研究改成了两个大问题,第一个就是给出一些信息,通过这些信息你能解决什么问题?第二个就是出示问题,解决这个问题选择哪些信息?解决问题的方法是什么?这样就很明显的体现了两种解决问题的策略“阅读信息联想问题”和“聚焦问题,寻找相关信息”使得问题的解决不仅仅局限解答问题上,更多的是引导学生对解决问题的策略感悟和总结分析。从而这节课的教学目标就有了很大的提升。
二、老师与学生要用亲和力。
试讲的过程中不断的涌现出我上课中的种种问题,其中让我感触最深的就是“语言生硬”和“眼神往上看”讲课中与学生距离很远。xxx校长说的非常正确我之所以出现这种就是因为平常上课与学生的交往。近几年我都在半路接班,接班的滋味很难受,每次都得费很大的功夫才能让学生原有的坏习惯和行为又算改变,接班时随着对学生的了解越来越多,他们的坏毛病也就随之而来,想一想我都养成了一个坏习惯,在我的眼里更多的是学生坏毛病,很少能够看到哪个学生方方面面都好,所以每次上课或遇到事情都会很严肃的跟他们交流,说话也就生硬。这样的说话习惯在公开课上就显得那么不协调,尤其是用其他班的学生上课,师生之间什么都是陌生的,我的课堂语言显得好乏味。经过这次讲课我想我应该改变一下自己,不仅仅做一个严肃的教师,更好提高自己的亲和力,学会走进学生的心灵,在学习上不应因为知识不懂或不会而给予批评,如果态度不好必须严厉批评,对待学生要针对事情区别对待,该严厉时严,上课讲解题目时要温和一些,走进学生能够进行眼神的交流。
三、备学生是非常重要的。
一节成功的课不在于你有多少花哨的教学环节,而是在于你能否抓住学生的真实思维状态因势利导。这节课我采取的是课前研究课上汇报交流的形式,要想讲好这样的课,必须对学生了如指掌,既了解学生的研究报告写成什么样,更要知道学生能否讲出来,讲的怎么样?如果知道应该指导到什么程度,指导过了就假了,如果任其自然课上就很可能完不成任务,很难拿捏。我试讲了3遍,用了三个班,每个班的情况有很大的区别,但是到了四班时,学生优秀表达能力又强,这节课最后上完感觉有些太简单,又一次没能抓住学生的特点进行教学设计和教学,所以即使是同一节课在不同的班级中上,应该处理的方式,及达成的目标都应该有所不同。所以上好一节成功的课关键在于了解学生,备课时的核心应该是学生不应该仅仅放在教学设计上。
每一次讲课都是一次磨练,这次活动展示了自己的优点更是看到了自己的不足,我想这次能够激励我,慢慢的改变自己的教学能为,不断的提高我的教学水平。
分数乘法单元总结 第7篇
1、每节课的内容不易过多,不能贪多,贪多嚼不烂,学生不易一下全掌握。要分的稍微细致一些,以便学生理解掌握,也有利于知识的扩展与深化。
2、分数乘法中:求一个数的几分之几是本册中的中心,是重点。本册所有数与代数教学内容都是围绕着这一中心展开的。
3、由于我没有经验,以至于在教学中没有强化分率与数量的一一对应关系。在后来的混合计算这一章中进行应用题教学学生理解起来有困难。
针对以上失误,在今后教学中要补充的内容是:
1、让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
2、强化分率与数量的一一对应关系。
3、帮助学生理解“一个数的几分之几”与“一个数占另一个数”的几分之几的不同。
分数乘法单元总结 第8篇
比的意义
(1)两个数相除又叫做两个数的比
(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。
比例尺:图上距离:实际距离=比例尺
要求会求比例尺;xxx图上距离和比例尺求实际距离;xxx实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
按比例分配:
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配?
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
比例的意义:比例的意义
表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的`两项叫做外项,中间的两项叫做内项?
比例的性质?:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质?
解比例:根据比例的基本性质,如果xxx比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例?
成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就xxx正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)
成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就xxx反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)?
分数乘法单元总结 第9篇
1、画线段图:
(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
(2)部分和整体的关系:画一条线段图。
2、找单位“1”: 单位“1” 在分率句中分率的前面;
或在“占”、“是”、“比”“相当于”的后面。
3、写数量关系式的技巧:
(1)“的”相当于 “×” ,“占”、“相当于”“是”、“比”是 “ = ”
(2)分率前是“的”字:用单位“1”的量×分率=具体量
例如:甲数是20,甲数的1/3是多少?列式是:20×1/3
4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:
(比少):单位“1”的量×(1—分率)=具体量;
例如:甲数是50,乙数比甲数少1/2,乙数是多少?
列式是:50×(1—1/2)
(比多):单位“1”的量×(1+分率)=具体量
例如:xxx有30元钱,xxx比xxx多3/5,xxx有多少钱?
列式是:50×(1+3/5)
3、求一个数的几倍是多少:用一个数×几倍;
4、求一个数的几分之几是多少:用一个数×几分之几。
5、求几个几分之几是多少:用几分之几×个数
6、求xxx一个部分量是总量的几分之几,求另一个部分量的方法:
(1)、单位“1”的量×(1—分率)=另一个部分量(建议用)
(2)、单位“1”的量—xxx占单位“1”的几分之几的部分量=要求的部分量
例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的关键字“其中”)
分数乘法单元总结 第10篇
1.把整体“1”平均分成若干份,表示这样的一份或几份的数叫做分数.分母表示把一个物体平均分成几
份,分子是表示这样几份的数.把1平均分成分母份,表示这样的分子份.
2.分子在上分母在下,也可以把它当做除法来看,用分子除以分母,相反乘法也可以改为用分数表
3.分数的分子不能是小数只是除0以外的自然数;
4.分数可以表述成一个除法算式:如二分之一等于1除以2.其中,1分子等于被除数,-分数线等
于除号,2分母等于除数,而分数值则等于商
5.小数化分数
小数化分数,小数部分有几位分母就有几个零.例:
如是纯循环小数,循环节有几位,分母就有几个9.例:(3循环)=3/9=1/3
如是混循环小数,循环节有几位,分母就有几个9;不循环的数字有几位,9后面就有几个
0,而分子是用循环节减去不循环的部分.例:(2循环)=2-1/90=1/90
注意:最后一定要约分.
6.分类
分数一般分成:真分数,假分数,带分数,百分数;
或分成正分数和负分数.
正真分数的值小于1.分子比分母小,
例:1/3
假分数的值大于1,或者等于1.分子比分母大或相等(假分数包括带分数)
例:5/3、7/7、
带分数的值大于1.
注意事项
①分母不能为0,否则无意义.
②分数中的分子或分母经过约分后不能出现无理数(如2的平方根),否则就不是分数.
③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数.(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)
7.分数加减法
1、同分母分数相加减,分母不变,即分数单位不变,分子相加减,最后要化成最简分数.
例1:2/9+5/9=2+5/9=7/9
例2:1/8+3/8=1+3/8=4/8=1/2
例3:5/9-1/9=5-1/9=4/9
例4:3/4-1/4=3-1/4=2/4=1/2
2、异分母分数相加减,先通分,即运用分数的基本*质将异分母分数转化为同分母分数,
改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后要化成最简分数.
例1:3/4+5/7=21/28+20/28=21+20/28=41/28
例2:5/24+1/8=5/24+3/24=5+3/24=8/24=1/3
例3:7/8-1/4=7/8-2/8=7-2/8=5/8
例4:8/15-1/5=8/15-3/15=8-3/15=5/15=1/3
8.分数乘除法
1、分数乘整数,分母不变,分子乘整数,最后要化成最简分数.
例1:4/5×3=4×3/5=12/5
例2:3/22×2=3×2/22=6/22=3/11
2、分数乘分数,用分子乘分子,用分母乘分母,最后要化成最简分数.
例1:5/6×1/3=5×1/6×3=5/18
例2:2/5×1/4=2×1/5×4=2/20=1/10
3、分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后要化成最
简分数.
例1:4/15÷2=4÷2/15=2/15
例2:42/30÷7=42÷7/30=6/30=1/5
4、分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒数,
最后要化成最简分数.
例1:3/8÷2=3/8×1/2=3×1/8×2=3/16
例2:4/5÷6=4/5×1/6=4×1/5×6=4/30=2/15
5、分数除以分数,等于被除数乘除数的倒数,最后不是最简分数要化成最简分数.
例1:2/3÷3/4=2/3×4/3=2×4/3×3=8/9
例2:2/15÷1/3=2/15×3=2×3/15=6/15=2/5
1、在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
4、比较分数的大小:
⑴分母相同的分数,分子大的那个分数就大。
⑵分子相同的分数,分母小的那个分数就大。
⑶分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
⑷如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
5、分数的分类
按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数
⑴真分数:分子比分母小的分数叫做真分数。真分数小于1。
⑵假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
⑶带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
6、分数和除法的关系及分数的基本*质
⑴除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。
⑵由于分数和除法有密切的关系,根据除法中“商不变”的*质可得出分数的基本*质。
⑶分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本*质,它是约分和通分的依据。
7、约分和通分
⑴分子、分母是互质数的分数,叫做最简分数。
⑵把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
⑶约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
⑷把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
⑸通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
8、倒数
⑴乘积是1的两个数互为倒数。
⑵求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
⑶1的倒数是1,0没有倒数
分数乘法单元总结 第11篇
(一)分数乘法的意义
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少?1/3×5表示求5个1/3的和是多少?
2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/xxx求1/3的4/7是多少。
4×3/8表示求4的3/8是多少?
(二)、分数乘法的计算法则
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的.要先约分,再计算。(尽量约分,不会约分的就不约,xxx的质因数有11×11=121;13×13=169;17×17=289;19×19=361)
4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a*c+b*c
分数乘法单元总结 第12篇
求一个数的几分之几是多少的应用题,是学生学习分数应用题的起始内容,在本课教学中,我努力做到了以下几点:
一、创设情境,激发兴趣
教育心理学研究表明:在学生参与课堂学习的过程中,深层次的认知投入和积极的情感体验密切相关,而良好的情感态度的形成反过来会促进学生主动地学习与探索。学生的兴趣是一种资源,是学习的动力。在整节课中,以雅典奥运会为背景,课始师生就奥运会这一话题的亲切谈话,营造了一种民主、和谐、宽松、自由的教学氛围,既为新知的学习营造良好的氛围,也让学生在不知不觉间做好情感上的准备。例题的选择、练习的设计都和奥运会紧密相关,学生在这生动而充满时代气息的情境中,经历了知识的探索交流、延伸拓展的过程,新颖的内容使学生自始至终保持浓厚的兴趣,也体现了课堂教学整体结构的美。
二、自主探究,解决问题
每个学生是不同的个体,他们的思维方法可能千差万别,他们对教材也会有不同的理解。学生的这种不同理解,其实就是一种很好的课程资源。在新知教学过程中,学生在理解题意的基础上,先画线段图,后尝试解答,再合作研讨。教师在巡视检查的过程中,发现学生有两种解法:(1)32÷4×3(2)32×3/4。于是我请两位同学上台板演,并要求他们讲讲自己解题的想法。在此基础上引导学生分析比较两种解法的联系。同学们在合作探讨中清楚地认识了两种求法实际上都是求32枚金牌的3/4是多少。在这个过程中,学生的想法得到了充分的肯定和鼓励,同时也拓宽了其他学生的思路。
三、精心练习,追求高效
如何让学生体会学习数学有用,学习数学有价值。我想,最好的办法是设计相关练习,让学生应用所学的数学知识来解决实际问题,由此来体会数学与生活的密切联系。在本课教学中,我采用新颖的图文结合的形式呈现问题,通过尝试计算银牌、铜牌的重量,既延伸了雅典奥运会的情境,又巩固了分数乘法应用题的数量关系,渗透了学法指导,培养了学生的探究能力。学生在练习过程中,有效地培养了学生选择信息、加工信息、整合信息的能力。
关注人是新课程改革的核心理念。在教学中,我们要创造性使用教材,让教材真正成为学生自主开展数学学习的“有效素材”,我们应从学的层面对教材进行“学习化”的加工,应站在“学材”的视角上对教材从内容、结构、呈现方式等多个角度作出理性重构,努力使教学内容为学生所喜欢。我们要给学生提供充分探求的空间,有力促进学生积极、主动、高效地学习,让学生真正成为课堂教学的有效资源。我们还要精心设计练习,使学生学以致用,体会到学数学有用。总之,我们要努力让数学课堂成为焕发学生生命动力的殿堂!
分数乘法单元总结 第13篇
我上了一节分数乘法应用题。课后我感到既有成功的喜悦也有不足,具体体现在以下几个方面:
一、数形结合的思想
由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得中观重要了纵观教材中,数形结合思想的渗透也有着不同的层次,例如分数乘法(一)和分数乘法(二)中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在分数乘法(三)中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲“以形论数”和“以数表形”两个方面有机的结合起来,只有完整的是学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
二、是充分重视学生“说”的训练。
在以前应用题的教学中,对“说”的训练重视的不够,表现为学生只会做题不会说,这个片断,我不仅关心学生是否会解答问题,更关注解决问题是采用了什么方法,以及方法是怎样想出来的。引导学生把思考过程有条理的说出来,为了深化学生的思维,避免死记硬背、机械模仿,解题后要求说出算式的依据,在说中及时得到反馈,进行矫正、补充,这种“说”的训练,不仅能帮助学生正确分析数量关系,提高分析、解决问题的能力,还能促进语言与思维的协调发展。
三、是很好地解决了“大部分学生会,怎么教“的问题。
因为学生已经掌握了一个数乘分数的意义,在此基础上学生本节内容并不难,为此我引导学生主动探索,培养他们学习应用题的兴趣。在以往的教学中,往往要求学生死记数量关系,找出谁是单位“1”,谁是分率,知道要求是分率对应的问题用乘法计算等,学生只会用一种方法,长此以往,对灵活解题是不利的,在这节课中,问题开放,采用四人小组合作,引导学生探索、相互研究,大胆发表不同的见解,让学生在“说”中学到知识,增长本领。
分数乘法单元总结 第14篇
1、简单应用题
(1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
(2) 解题步骤:
a.审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。
b.选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
c.检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。
2、复合应用题
(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
(2)含有三个xxx条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
(3)含有两个xxx条件的两步计算的应用题。
xxx两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
xxx两数之和与其中一个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应用题。
(5)解答三步计算的应用题。
(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在xxx数或未知数中间含有小数。
(7)常见的数量关系:
总价= 单价×数量
路程= 速度×时间
工作总量=工作时间×工效
总产量=单产量×数量
3、典型应用题
具有独特的.结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:xxx几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
(2) 归一问题:xxx相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
(3)行程问题:
关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
(4)鸡兔问题:xxx“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)
分数乘法单元总结 第15篇
整数和整除的意义
1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,叫做整数
2.在正整数1,2,3,4,5,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,叫做负整数
3. 零和正整数统称为自然数
4.正整数、负整数和零统称为整数
5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
因数和倍数
1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数
3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身
4.一个数的倍数的个数是无限的,其中最小的倍数是它本身
能被2,5整除的数
1.个位数字是0,2,4,6,8的.数都能被2整除
2.在正整数中(除1外),与奇数相邻的两个数是偶数
3.在正整数中,与偶数相邻的两个数是奇数
4.个位数字是0,5的数都能被5整除
5. 0是偶数
素数、合数与分解素因数
1.只含有因数1及本身的整数叫做素数或质数
2.除了1及本身还有别的因数,这样的数叫做合数
3. 1既不是素数也不是合数
4.奇数和偶数统称为正整数,素数、合数和1统称为正整数
5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数
6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数: 树枝分解法,短除法
公因数与最大公因数
1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数
4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数
5.如果两个数是互素数,那么这两个数的最大公因数是
分数乘法单元总结 第16篇
本节课是分数乘法式题的教学,教者有意安排了一道带分数乘法的式子题,旨在进一步提高学生的计算能力。但这节课在诸多方面已经远远超越了教者的本意,达到了一个新的境界,这是一节非常成功的数学课,本人认为这节课有以下几方面的优点:
1、改变了单纯的知识传授者的身份
在本节课中,教师积极创设了有利于学生自主学习的环境:“猜一猜,”真是这个“猜一猜”点燃了学生思维的火化,开放了学生思维的空间。教者并没有直接告知学生如何去计算,不只是单纯的进行知识灌输,不再是用原有的“教师中心”的做法,已经站到了学生的中间,从学生的经验出发组织学生的学习,为学生提供了更多的发展机会。
2、倡导个性化的知识生成方式
新课程实施旨在扭转“知识传授”为特征的局面,把转变学生的学习方式为重要的着眼点,以尊重学生学习方式的独特性和个性化为基本信条、新课程要求在学科领域的教学中渗透“自主、探究、与合作”的学习方式。在本案例中,教者不再仅仅是“教教材”,当问题出现后,不再是教者面对知识的独白,并没有告知学生如何去做,而是让学生先“猜一猜”,说说自己的想法。当学生提出不同的见解后,又积极引导学生对有价值的“经验、见解”深入进行探究,共同寻求解决问题的方法。这已经超出了个人化行为,成为群体合作行为,与学生建立了真正的对话关系,超越自己个体的有限视界,填平“知识权威”与“无知者”之间的鸿沟。这一切有助于学生个性化的知识生成,更有助于学生形成“不断进取,不断创新”的精神世界。
3、把握生成,与境俱进
记得一位教育专家曾经说过这样一句话:“每一节课都有生成,只是教师有没有注意吧了。”在本案例中,教者能做到“与境俱进”,能在预设“猜一猜”的基础上,抓住生成,及时灵活处理具有“生成价值”的问题与回答,就话答话,“与境具进”,及时引导学生针对提出的话题展开探讨。整个教学充满灵动、智慧、活力,课堂教学真正做到“开放”与“灵活”,充分促进学生自主和富有个性化、创造性地学习。
课改大潮轰轰烈烈,涤荡着每一个角落。当前的课堂教学如何实施,我想本案例很值得我们学习和借鉴。
分数乘法单元总结 第17篇
一、学习目标:
1.使学生能在方格纸上用数对确定位置;
2.使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算;
3.使学生理解倒数的意义,掌握求倒数的方法;
4.理解并掌握分数除法的计算方法,会进行分数除法计算;
5.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值;
6.使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。
7.使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。
二、学习难点:
1.能用数对表示物体的位置,正确区分列和行的顺序;
2.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;
3.掌握求倒数的方法;
4.圆的周长和圆周率的意义,圆周长公式的推导过程;
5.百分数的意义,求一个数是另一个数的百分之几的应用题;
6.理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆;
7.理解比的意义。
三、知识点概念总结:
1.分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归
5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
8.小数的倒数:
普通算法:找一个小数的倒数,例如,把化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的.分子做分母,原来的分母做分子。则是4/1
9.用1计算法:也可以用1去除以这个数,例如,1/等于4,所以的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是xxx两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1.单位1xxx,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个。
15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。
17.比和比例的区别:
(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。
(2)比的基本性质和比例的基本性质意义不同、应用不同。比的性质:比的前项和后项都乘或除以一个不为零的数。比值不变。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系:比例是由两个相等的xxx。
18.比和比例的意义:
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。而且,比号没有括号的含义而另一种形式,分数有括号的含义!
19.比和比例的联系:
比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。比例是由xxx的,如果没有两种量的比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。如果两个比相等,那么这两个比就可以组成比例。成比例的两个比的比值一定相等。
20.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
21.圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示
22.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
23.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一。d=2r或r=d/2。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
24.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
25.圆周率:圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈。
直径所对的圆周角是直角。90°的圆周角所对的弦是直径。
26.圆的面积公式:圆所占平面的大小叫做圆的面积。πr2;用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
27.周长计算公式:
(1)xxx直径:C=πd
(2)xxx半径:C=2πr
(3)xxx周长:D=c/π
(4)圆周长的一半:1/2周长(曲线)
(5)半圆的周长:1/2周长+直径(π÷2+1)
28.面积计算公式:
(1)xxx半径:S=πr2
(2)xxx直径:S=π(d/2)2
(3)xxx周长:S=π[c÷(2π)]2
29.百分数与分数的区别:
(1)意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数还可以表示两数之间的倍数关系.
(2)应用范围不同。百分数在生产、工作和生活中,xxx调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。
(3)书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.
(4)百分数不能带单位名称;当分数表示具体数时可带单位名称。
30.百分数应用:
百分数一般有三种情况:
①100%以上,如:增长率、增产率等。
②100%以下,如:发芽率、成长率等。
③刚好100%,如:正确率,合格率等。
31.百分数的意义:
百分数只可以表示分率,而不能表示具体量,所以不能带单位。百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入。
32.日常应用:
每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。20%、10%让人一目了然,既清楚又简练。
知识点扩展
1.圆的定义:
几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。
3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
6.圆的种类:(1)整体圆形,(2)弧形圆,(3)扁圆,(4)椭形圆,(5)缠丝圆,(6)螺旋圆,(7)圆中圆、圆外圆,(8)重圆,(9)横圆,(10)竖圆,(11)斜圆。
7.圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO
8.百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。
六年级上册数学学习方法
养成良好的学习数学习惯
多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法
中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
逐步形成“以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
要建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
六年级上册数学学习技巧
1.“方程”思想
数学是研究事物的空间形式和数量关系。初中阶段最重要的数量关系是平等关系,其次是不平等关系。最常见的等价关系是“方程”。例如,在等速运动中,距离、速度和时间之间存在等价关系,可以建立相关方程:速度时间=距离。在这样的方程中,通常会有xxx的量和未知量。含有这种未知量的方程是“方程”,它可以从方程中xxx的量导出。未知量的过程是求解方程的过程。我们在小学时接触过简单的方程,而在初中第一年,我们系统地学习解一变量的第一个方程,并总结出解一变量的第一个方程的五个步骤。如果我们学习并掌握这五个步骤,任何一个等式都能顺利地解决。在2年级和3年级,我们还将学习解决二次方程、二次方程和简单三角方程。在高中,我们还学习指数方程、对数方程、线性方程、参数方程、极坐标方程等。求解这些方程的思想几乎是相同的。通过一些方法,将它们转化为一元一阶方程或一元二次方程的形式,然后通过求解一元一阶方程或求一元二次方程根公式的常用五步法求解。物理中的能量守恒、化学中的化学平衡方程以及大量实际应用都需要建立方程和求解方程才能得到结果。因此,学生必须学会如何解一维一阶方程和一xxx阶方程,然后才能学好其他形式的方程。
所谓的“方程”思想是数学问题,特别是未知现实见面和xxx数量的复杂关系,善于利用“方程”的观点建立相关方程,然后利用求解方程的方法来解决这个问题。
2.“数与形相结合”的思想
数字和形状在世界各地随处可见。任何东西,除去它的定性方面,都是留给数学研究的,只有形状和尺寸的属性。代数和几何是初中数学的两个分支。然而,代数的研究依赖于“形式”,而几何学则依赖于“数”,而“数与形的结合”则是一种趋势。我们学得越多,“数字”和“形状”就越不可分割,在高中时,“数字”和“形状”是密不可分的。有一门关于用代数方法研究几何问题的课程,叫做“分析几何”。第三年,平面笛卡尔坐标系建立后,函数的研究就离不开图像。通过图像的帮助,很容易找到问题的关键点,解决问题。在今后的数学学习中,应重视“数与形相结合”的思维训练。只要任何问题都与“形状”有关,就应该根据主题的含义起草一个草图来分析它。这样做不仅是直观的,而且是全面的。xxx,容易找到切入点,对解决问题有很大的益处。品尝甜味的人会逐渐养成“数形结合”的好习惯。